{"title":"Research Progress of NK Cells in Glioblastoma Treatment.","authors":"Hao Wu, Qi Liu, Fenglu Wang, Wenwen Gao, Feng Zhou, Haikang Zhao","doi":"10.2147/OTT.S486411","DOIUrl":null,"url":null,"abstract":"<p><p>NK cells are a type of antitumor immune cell with promising clinical application, following T cells. The activity of NK cells is primarily regulated by their surface receptors and immune microenvironment. In gliomas, the tumor microenvironment exerts a strong immunosuppressive effect, which significantly reduces the clinical efficacy of NK cell immunotherapy. Therefore, this review aims to discuss the latest research on the role of NK cells in glioma immunotherapy, focusing on aspects such as NK cell development, function, and localization. It summarizes information on the compounds, monoclonal antibodies, and cytokine therapies targeting NK cells while emphasizing the current status and trends of gene-modified NK cells in glioma treatment. Additionally, it explores the molecular mechanisms underlying immune escape in glioma cells, providing a theoretical foundation and new perspectives for NK cell-based immunotherapy in gliomas.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"18 ","pages":"87-106"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S486411","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
NK cells are a type of antitumor immune cell with promising clinical application, following T cells. The activity of NK cells is primarily regulated by their surface receptors and immune microenvironment. In gliomas, the tumor microenvironment exerts a strong immunosuppressive effect, which significantly reduces the clinical efficacy of NK cell immunotherapy. Therefore, this review aims to discuss the latest research on the role of NK cells in glioma immunotherapy, focusing on aspects such as NK cell development, function, and localization. It summarizes information on the compounds, monoclonal antibodies, and cytokine therapies targeting NK cells while emphasizing the current status and trends of gene-modified NK cells in glioma treatment. Additionally, it explores the molecular mechanisms underlying immune escape in glioma cells, providing a theoretical foundation and new perspectives for NK cell-based immunotherapy in gliomas.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.