Hyung Suk Kim, Hyung Jin Cheon, Sang Hoon Lee, Junho Kim, Seunghyup Yoo, Yun-Hi Kim, Chihaya Adachi
{"title":"Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.","authors":"Hyung Suk Kim, Hyung Jin Cheon, Sang Hoon Lee, Junho Kim, Seunghyup Yoo, Yun-Hi Kim, Chihaya Adachi","doi":"10.1126/sciadv.adr1326","DOIUrl":null,"url":null,"abstract":"<p><p>The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates. Using these methodologies, we crafted ν-DABNA-O-xy and developed deep-blue organic light-emitting diodes featuring a Commission Internationale de l'Eclairage y of 0.07 and an FWHM of 19 nm. The maximum external quantum efficiency reached ca. 27.5% with a binary emission layer, which increased to 41.3% with the hyperfluorescent architecture, effectively mitigating efficiency roll-off. These findings are expected to guide the systematic design of MR-type TADF clusters, unlocking their full potential.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 4","pages":"eadr1326"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr1326","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates. Using these methodologies, we crafted ν-DABNA-O-xy and developed deep-blue organic light-emitting diodes featuring a Commission Internationale de l'Eclairage y of 0.07 and an FWHM of 19 nm. The maximum external quantum efficiency reached ca. 27.5% with a binary emission layer, which increased to 41.3% with the hyperfluorescent architecture, effectively mitigating efficiency roll-off. These findings are expected to guide the systematic design of MR-type TADF clusters, unlocking their full potential.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.