Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-24 Epub Date: 2025-01-22 DOI:10.1126/sciadv.adr1326
Hyung Suk Kim, Hyung Jin Cheon, Sang Hoon Lee, Junho Kim, Seunghyup Yoo, Yun-Hi Kim, Chihaya Adachi
{"title":"Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design.","authors":"Hyung Suk Kim, Hyung Jin Cheon, Sang Hoon Lee, Junho Kim, Seunghyup Yoo, Yun-Hi Kim, Chihaya Adachi","doi":"10.1126/sciadv.adr1326","DOIUrl":null,"url":null,"abstract":"<p><p>The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates. Using these methodologies, we crafted ν-DABNA-O-xy and developed deep-blue organic light-emitting diodes featuring a Commission Internationale de l'Eclairage y of 0.07 and an FWHM of 19 nm. The maximum external quantum efficiency reached ca. 27.5% with a binary emission layer, which increased to 41.3% with the hyperfluorescent architecture, effectively mitigating efficiency roll-off. These findings are expected to guide the systematic design of MR-type TADF clusters, unlocking their full potential.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 4","pages":"eadr1326"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr1326","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of boron-based organic compounds with multiresonance (MR)-induced thermally activated delayed fluorescence (TADF) is propelled by their potential as narrowband blue emitters for wide-gamut displays. Although boron-doped polycyclic aromatic hydrocarbons in MR compounds share common structural features, their molecular design traditionally involves iterative approaches with repeated attempts until success. To address this, we implemented machine learning algorithms to establish quantitative structure-property relationship models, predicting key optoelectronic characteristics, such as full width at half maximum (FWHM) and main peak wavelength, for deep-blue MR candidates. Using these methodologies, we crafted ν-DABNA-O-xy and developed deep-blue organic light-emitting diodes featuring a Commission Internationale de l'Eclairage y of 0.07 and an FWHM of 19 nm. The maximum external quantum efficiency reached ca. 27.5% with a binary emission layer, which increased to 41.3% with the hyperfluorescent architecture, effectively mitigating efficiency roll-off. These findings are expected to guide the systematic design of MR-type TADF clusters, unlocking their full potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Advancing efficiency in deep-blue OLEDs: Exploring a machine learning-driven multiresonance TADF molecular design. Association of poultry vaccination with interspecies transmission and molecular evolution of H5 subtype avian influenza virus. Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation. Mitochondrial respiratory complex III sustains IL-10 production in activated macrophages and promotes tumor-mediated immune evasion. Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1