{"title":"Electronic structure of superconducting infinite-layer lanthanum nickelates.","authors":"Wenjie Sun, Zhicheng Jiang, Chengliang Xia, Bo Hao, Shengjun Yan, Maosen Wang, Yueying Li, Hongquan Liu, Jianyang Ding, Jiayu Liu, Zhengtai Liu, Jishan Liu, Hanghui Chen, Dawei Shen, Yuefeng Nie","doi":"10.1126/sciadv.adr5116","DOIUrl":null,"url":null,"abstract":"<p><p>Revealing the momentum-resolved electronic structure of infinite-layer nickelates is essential for understanding this class of unconventional superconductors but has been hindered by the formidable challenges in improving the sample quality. In this work, we report the angle-resolved photoemission spectroscopy of superconducting La<sub>0.8</sub>Sr<sub>0.2</sub>NiO<sub>2</sub> films prepared by molecular beam epitaxy and in situ atomic-hydrogen reduction. The measured Fermi topology closely matches theoretical calculations, showing a large Ni [Formula: see text]-derived Fermi sheet that evolves from hole-like to electron-like along <i>k<sub>z</sub></i> and a three-dimensional (3D) electron pocket centered at the Brillouin zone corner. The Ni [Formula: see text]-derived bands show a mass enhancement (<i>m</i>*/<i>m</i><sub>DFT</sub>) of 2 to 3, while the 3D electron band shows negligible band renormalization. Moreover, the Ni [Formula: see text]-derived states also display a band dispersion anomaly at higher binding energy, reminiscent of the waterfall feature and kinks observed in cuprates.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 4","pages":"eadr5116"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753431/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr5116","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Revealing the momentum-resolved electronic structure of infinite-layer nickelates is essential for understanding this class of unconventional superconductors but has been hindered by the formidable challenges in improving the sample quality. In this work, we report the angle-resolved photoemission spectroscopy of superconducting La0.8Sr0.2NiO2 films prepared by molecular beam epitaxy and in situ atomic-hydrogen reduction. The measured Fermi topology closely matches theoretical calculations, showing a large Ni [Formula: see text]-derived Fermi sheet that evolves from hole-like to electron-like along kz and a three-dimensional (3D) electron pocket centered at the Brillouin zone corner. The Ni [Formula: see text]-derived bands show a mass enhancement (m*/mDFT) of 2 to 3, while the 3D electron band shows negligible band renormalization. Moreover, the Ni [Formula: see text]-derived states also display a band dispersion anomaly at higher binding energy, reminiscent of the waterfall feature and kinks observed in cuprates.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.