Exploring the biological impact of bacteria-derived indole compounds on human cell health: Cytotoxicity and cell proliferation across six cell lines.

Q1 Environmental Science Toxicology Reports Pub Date : 2024-12-24 eCollection Date: 2025-06-01 DOI:10.1016/j.toxrep.2024.101883
Alisha Janiga-MacNelly, Maddison Vrazel, Ava E Roat, Maria Teresa Fernandez-Luna, Ramon Lavado
{"title":"Exploring the biological impact of bacteria-derived indole compounds on human cell health: Cytotoxicity and cell proliferation across six cell lines.","authors":"Alisha Janiga-MacNelly, Maddison Vrazel, Ava E Roat, Maria Teresa Fernandez-Luna, Ramon Lavado","doi":"10.1016/j.toxrep.2024.101883","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, research has increasingly focused on the interactions between diet, gut microbiota, and host organisms. Recent evidence suggests that tryptophan, an essential amino acid, can be metabolized by gut microbiota into indoles, which have significant biological effects. However, most research is limited to indole and its liver metabolite, indoxyl sulfate. This study examines the cytotoxic effects of five indole derivatives - indole-3-carboxylic acid (I3CA), indole-3-aldehyde (I3A), indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), and 3-methylindole (skatole, 3-MI) - on six human cell lines: adipose-derived mesenchymal stem cells (MSC), hepatocellular carcinoma (HepG2), liver progenitor cells (HepaRG), colorectal carcinoma cells (Caco-2), breast cancer cells (T47D), and lung fibroblast (MRC-5). Results show no sensitivity to indole itself across cell lines. MRC-5 was sensitive to all other compounds (EC50 0.52-49.8 µM). MSCs responded to IPA, I3CA, I3A, and 3-MI (EC50 0.33-1.87 µM), while HepaRG cells were affected by IAA, I3CA, I3A, and 3-MI (EC50 1.98-66.4 µM). T47D cells were sensitive to IPA and IAA, and Caco-2 cells only to IAA (EC50 2.02, 1.68, 0.52 µM, respectively). HepG2 cells showed no change in viability. AhR activation in HepG2-AhR-Lucia cells was triggered by all derivatives, particularly I3A, IPA, and I3CA. Growth experiments revealed I3CA decreased Caco-2 proliferation while increasing T47D proliferation. The findings suggest indole derivatives are generally non-cytotoxic to carcinomas but may adversely affect stem cells, with effects varying across cell lines.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"14 ","pages":"101883"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750580/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two decades, research has increasingly focused on the interactions between diet, gut microbiota, and host organisms. Recent evidence suggests that tryptophan, an essential amino acid, can be metabolized by gut microbiota into indoles, which have significant biological effects. However, most research is limited to indole and its liver metabolite, indoxyl sulfate. This study examines the cytotoxic effects of five indole derivatives - indole-3-carboxylic acid (I3CA), indole-3-aldehyde (I3A), indole-3-acetic acid (IAA), indole-3-propionic acid (IPA), and 3-methylindole (skatole, 3-MI) - on six human cell lines: adipose-derived mesenchymal stem cells (MSC), hepatocellular carcinoma (HepG2), liver progenitor cells (HepaRG), colorectal carcinoma cells (Caco-2), breast cancer cells (T47D), and lung fibroblast (MRC-5). Results show no sensitivity to indole itself across cell lines. MRC-5 was sensitive to all other compounds (EC50 0.52-49.8 µM). MSCs responded to IPA, I3CA, I3A, and 3-MI (EC50 0.33-1.87 µM), while HepaRG cells were affected by IAA, I3CA, I3A, and 3-MI (EC50 1.98-66.4 µM). T47D cells were sensitive to IPA and IAA, and Caco-2 cells only to IAA (EC50 2.02, 1.68, 0.52 µM, respectively). HepG2 cells showed no change in viability. AhR activation in HepG2-AhR-Lucia cells was triggered by all derivatives, particularly I3A, IPA, and I3CA. Growth experiments revealed I3CA decreased Caco-2 proliferation while increasing T47D proliferation. The findings suggest indole derivatives are generally non-cytotoxic to carcinomas but may adversely affect stem cells, with effects varying across cell lines.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxicology Reports
Toxicology Reports Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
7.60
自引率
0.00%
发文量
228
审稿时长
11 weeks
期刊最新文献
Podocyte-related biomarkers' role in evaluating renal toxic effects of silver nanoparticles with the possible ameliorative role of resveratrol in adult male albino rats. Genotoxicity study of Cannabis sativa L. extract. Corrigendum regarding missing or incorrect declaration of competing interest statements in previously published articles. Exploring the biological impact of bacteria-derived indole compounds on human cell health: Cytotoxicity and cell proliferation across six cell lines. Harnessing machine learning in contemporary tobacco research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1