{"title":"Harnessing machine learning in contemporary tobacco research.","authors":"Krishnendu Sinha, Nabanita Ghosh, Parames C Sil","doi":"10.1016/j.toxrep.2024.101877","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) has the potential to transform tobacco research and address the urgent public health crisis posed by tobacco use. Despite the well-documented health risks, cessation rates remain low. ML techniques offer innovative solutions by analyzing vast datasets to uncover patterns in smoking behavior, genetic predispositions, and effective cessation strategies. ML can predict smoking-induced non-communicable diseases (SiNCDs) like lung cancer and postmenopausal osteoporosis by identifying biomarkers and genetic profiles, generating personalized predictions, and guiding interventions. It also improves prediction of infant tobacco smoke exposure, distinguishes secondhand and thirdhand smoke, and enhances protection strategies for children. Data-driven, personalized approaches using ML track real-time data for personalized feedback and offer timely interventions, continuously improving cessation strategies. Overall, ML provides sophisticated predictive models, enhances understanding of complex biological mechanisms, and enables personalized interventions, demonstrating significant potential in the fight against the tobacco epidemic.</p>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"14 ","pages":"101877"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.toxrep.2024.101877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) has the potential to transform tobacco research and address the urgent public health crisis posed by tobacco use. Despite the well-documented health risks, cessation rates remain low. ML techniques offer innovative solutions by analyzing vast datasets to uncover patterns in smoking behavior, genetic predispositions, and effective cessation strategies. ML can predict smoking-induced non-communicable diseases (SiNCDs) like lung cancer and postmenopausal osteoporosis by identifying biomarkers and genetic profiles, generating personalized predictions, and guiding interventions. It also improves prediction of infant tobacco smoke exposure, distinguishes secondhand and thirdhand smoke, and enhances protection strategies for children. Data-driven, personalized approaches using ML track real-time data for personalized feedback and offer timely interventions, continuously improving cessation strategies. Overall, ML provides sophisticated predictive models, enhances understanding of complex biological mechanisms, and enables personalized interventions, demonstrating significant potential in the fight against the tobacco epidemic.