Graph anomaly detection based on hybrid node representation learning.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-20 DOI:10.1016/j.neunet.2025.107169
Xiang Wang, Hao Dou, Dibo Dong, Zhenyu Meng
{"title":"Graph anomaly detection based on hybrid node representation learning.","authors":"Xiang Wang, Hao Dou, Dibo Dong, Zhenyu Meng","doi":"10.1016/j.neunet.2025.107169","DOIUrl":null,"url":null,"abstract":"<p><p>Anomaly detection on graph data has garnered significant interest from both the academia and industry. In recent years, fueled by the rapid development of Graph Neural Networks (GNNs), various GNNs-based anomaly detection methods have been proposed and achieved good results. However, GNNs-based methods assume that connected nodes have similar classes and features, leading to issues of class inconsistency and semantic inconsistency in graph anomaly detection. Existing methods have yet to adequately address these issues, thereby limiting the detection performance of the model. Therefore, an anomaly detection method that consists of one semantic fusion-based node representation module and one attention mechanism-based node representation module is proposed to resolve the aforementioned issues, respectively. The main highlights of the current study are outlined below: First, a novel framework is developed, aiming to better resolve the issues of class inconsistency and semantic inconsistency in graph anomaly detection. Second, we propose the semantic fusion-based node representation module which is based on Chebyshev polynomial graph filtering and is able to effectively capture high-frequency and low-frequency components of graph signals. Third, to overcome semantic inconsistency in graph data, we devise an attention mechanism-based node representation module which can adaptively learns importance information of graph nodes, resulting in significant improvement of the model performance. Finally, experiments are carried out on five real-world anomaly detection datasets, and the results show that the proposed method outperforms the state-of-the-art methods.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107169"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107169","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection on graph data has garnered significant interest from both the academia and industry. In recent years, fueled by the rapid development of Graph Neural Networks (GNNs), various GNNs-based anomaly detection methods have been proposed and achieved good results. However, GNNs-based methods assume that connected nodes have similar classes and features, leading to issues of class inconsistency and semantic inconsistency in graph anomaly detection. Existing methods have yet to adequately address these issues, thereby limiting the detection performance of the model. Therefore, an anomaly detection method that consists of one semantic fusion-based node representation module and one attention mechanism-based node representation module is proposed to resolve the aforementioned issues, respectively. The main highlights of the current study are outlined below: First, a novel framework is developed, aiming to better resolve the issues of class inconsistency and semantic inconsistency in graph anomaly detection. Second, we propose the semantic fusion-based node representation module which is based on Chebyshev polynomial graph filtering and is able to effectively capture high-frequency and low-frequency components of graph signals. Third, to overcome semantic inconsistency in graph data, we devise an attention mechanism-based node representation module which can adaptively learns importance information of graph nodes, resulting in significant improvement of the model performance. Finally, experiments are carried out on five real-world anomaly detection datasets, and the results show that the proposed method outperforms the state-of-the-art methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1