Motif clustering and digital biomarker extraction for free-living physical activity analysis.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2025-01-22 DOI:10.1186/s13040-025-00424-1
Ya-Ting Liang, Charlotte Wang
{"title":"Motif clustering and digital biomarker extraction for free-living physical activity analysis.","authors":"Ya-Ting Liang, Charlotte Wang","doi":"10.1186/s13040-025-00424-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Analyzing free-living physical activity (PA) data presents challenges due to variability in daily routines and the lack of activity labels. Traditional approaches often rely on summary statistics, which may not capture the nuances of individual activity patterns. To address these limitations and advance our understanding of the relationship between PA patterns and health outcomes, we propose a novel motif clustering algorithm that identifies and characterizes specific PA patterns.</p><p><strong>Methods: </strong>This paper proposes an elastic distance-based motif clustering algorithm for identifying specific PA patterns (motifs) in free-living PA data. The algorithm segments long-term PA curves into short-term segments and utilizes elastic shape analysis to measure the similarity between activity segments. This enables the discovery of recurring motifs through pattern clustering. Then, functional principal component analysis (FPCA) is then used to extract digital biomarkers from each motif. These digital biomarkers can subsequently be used to explore the relationship between PA and health outcomes of interest.</p><p><strong>Results: </strong>We demonstrate the efficacy of our method through three real-world applications. Results show that digital biomarkers derived from these motifs effectively capture the association between PA patterns and disease outcomes, improving the accuracy of patient classification.</p><p><strong>Conclusions: </strong>This study introduced a novel approach to analyzing free-living PA data by identifying and characterizing specific activity patterns (motifs). The derived digital biomarkers provide a more nuanced understanding of PA and its impact on health, with potential applications in personalized health assessment and disease detection, offering a promising future for healthcare.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"8"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00424-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Analyzing free-living physical activity (PA) data presents challenges due to variability in daily routines and the lack of activity labels. Traditional approaches often rely on summary statistics, which may not capture the nuances of individual activity patterns. To address these limitations and advance our understanding of the relationship between PA patterns and health outcomes, we propose a novel motif clustering algorithm that identifies and characterizes specific PA patterns.

Methods: This paper proposes an elastic distance-based motif clustering algorithm for identifying specific PA patterns (motifs) in free-living PA data. The algorithm segments long-term PA curves into short-term segments and utilizes elastic shape analysis to measure the similarity between activity segments. This enables the discovery of recurring motifs through pattern clustering. Then, functional principal component analysis (FPCA) is then used to extract digital biomarkers from each motif. These digital biomarkers can subsequently be used to explore the relationship between PA and health outcomes of interest.

Results: We demonstrate the efficacy of our method through three real-world applications. Results show that digital biomarkers derived from these motifs effectively capture the association between PA patterns and disease outcomes, improving the accuracy of patient classification.

Conclusions: This study introduced a novel approach to analyzing free-living PA data by identifying and characterizing specific activity patterns (motifs). The derived digital biomarkers provide a more nuanced understanding of PA and its impact on health, with potential applications in personalized health assessment and disease detection, offering a promising future for healthcare.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
Motif clustering and digital biomarker extraction for free-living physical activity analysis. An ensemble machine learning-based performance evaluation identifies top In-Silico pathogenicity prediction methods that best classify driver mutations in cancer. Correction: Predictive modeling of ALS progression: an XGBoost approach using clinical features. Enriched phenotypes in rare variant carriers suggest pathogenic mechanisms in rare disease patients. MultiChem: predicting chemical properties using multi-view graph attention network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1