{"title":"SpaGraphCCI: Spatial cell–cell communication inference through GAT-based co-convolutional feature integration","authors":"Han Zhang, Ting Cui, Xiaoqiang Xu, Guangyu Sui, Qiaoli Fang, Guanghao Yang, Yizhen Gong, Sanqiao Yang, Yufei Lv, Desi Shang","doi":"10.1049/syb2.70000","DOIUrl":null,"url":null,"abstract":"<p>Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell–cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space. SpaGraphCCI can achieve significant performance on datasets from multiple platforms including single-cell resolution datasets (AUC reaches 0.860–0.907) and spot resolution datasets (AUC ranges from 0.880 to 0.965). SpaGraphCCI shows better performance by comparing with the existing deep learning-based spatial cell communication inference methods. SpaGraphCCI is robust to high noise and can effectively improve the inference of CCIs. We test on a human breast cancer dataset and show that SpaGraphCCI can not only identify proximal cell communication but also infer new distal interactions. In summary, SpaGraphCCI provides a practical tool that enables researchers to decipher spatially resolved cell–cell communication based on spatial transcriptome data.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell–cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space. SpaGraphCCI can achieve significant performance on datasets from multiple platforms including single-cell resolution datasets (AUC reaches 0.860–0.907) and spot resolution datasets (AUC ranges from 0.880 to 0.965). SpaGraphCCI shows better performance by comparing with the existing deep learning-based spatial cell communication inference methods. SpaGraphCCI is robust to high noise and can effectively improve the inference of CCIs. We test on a human breast cancer dataset and show that SpaGraphCCI can not only identify proximal cell communication but also infer new distal interactions. In summary, SpaGraphCCI provides a practical tool that enables researchers to decipher spatially resolved cell–cell communication based on spatial transcriptome data.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.