SpaGraphCCI: Spatial cell–cell communication inference through GAT-based co-convolutional feature integration

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2025-01-23 DOI:10.1049/syb2.70000
Han Zhang, Ting Cui, Xiaoqiang Xu, Guangyu Sui, Qiaoli Fang, Guanghao Yang, Yizhen Gong, Sanqiao Yang, Yufei Lv, Desi Shang
{"title":"SpaGraphCCI: Spatial cell–cell communication inference through GAT-based co-convolutional feature integration","authors":"Han Zhang,&nbsp;Ting Cui,&nbsp;Xiaoqiang Xu,&nbsp;Guangyu Sui,&nbsp;Qiaoli Fang,&nbsp;Guanghao Yang,&nbsp;Yizhen Gong,&nbsp;Sanqiao Yang,&nbsp;Yufei Lv,&nbsp;Desi Shang","doi":"10.1049/syb2.70000","DOIUrl":null,"url":null,"abstract":"<p>Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell–cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space. SpaGraphCCI can achieve significant performance on datasets from multiple platforms including single-cell resolution datasets (AUC reaches 0.860–0.907) and spot resolution datasets (AUC ranges from 0.880 to 0.965). SpaGraphCCI shows better performance by comparing with the existing deep learning-based spatial cell communication inference methods. SpaGraphCCI is robust to high noise and can effectively improve the inference of CCIs. We test on a human breast cancer dataset and show that SpaGraphCCI can not only identify proximal cell communication but also infer new distal interactions. In summary, SpaGraphCCI provides a practical tool that enables researchers to decipher spatially resolved cell–cell communication based on spatial transcriptome data.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.70000","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics technologies potentially provide the extra spatial position information and tissue image to better infer spatial cell–cell interactions (CCIs) in processes such as tissue homeostasis, development, and disease progression. However, methods for effectively integrating spatial multimodal data to infer CCIs are still lacking. Here, the authors propose a deep learning method for integrating features through co-convolution, called SpaGraphCCI, to effectively integrate data from different modalities of SRT by projecting gene expression and image feature into a low-dimensional space. SpaGraphCCI can achieve significant performance on datasets from multiple platforms including single-cell resolution datasets (AUC reaches 0.860–0.907) and spot resolution datasets (AUC ranges from 0.880 to 0.965). SpaGraphCCI shows better performance by comparing with the existing deep learning-based spatial cell communication inference methods. SpaGraphCCI is robust to high noise and can effectively improve the inference of CCIs. We test on a human breast cancer dataset and show that SpaGraphCCI can not only identify proximal cell communication but also infer new distal interactions. In summary, SpaGraphCCI provides a practical tool that enables researchers to decipher spatially resolved cell–cell communication based on spatial transcriptome data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
StackAHTPs: An explainable antihypertensive peptides identifier based on heterogeneous features and stacked learning approach The optimised model of predicting protein-metal ion ligand binding residues Emergent robust oscillatory dynamics in the interlocked feedback-feedforward loops Microbiome analysis reveals the potential mechanism of herbal sitz bath complementary therapy in accelerating postoperative recovery from perianal abscesses SpaGraphCCI: Spatial cell–cell communication inference through GAT-based co-convolutional feature integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1