{"title":"Deep Learning Enabled Scoring of Pancreatic Neuroendocrine Tumors Based on Cancer Infiltration Patterns.","authors":"Soner Koc, Ozgur Can Eren, Rohat Esmer, Fatma Ulkem Kasapoglu, Burcu Saka, Orhun Cig Taskin, Pelin Bagci, Nazmi Volkan Adsay, Cigdem Gunduz-Demir","doi":"10.1007/s12022-025-09846-3","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms that include tumors with different histomorphologic characteristics that can be correlated to sub-categories with different prognoses. In addition to the WHO grading scheme based on tumor proliferative activity, a new parameter based on the scoring of infiltration patterns at the interface of tumor and non-neoplastic parenchyma (tumor-NNP interface) has recently been proposed for PanNET categorization. Despite the known correlations, these categorizations can still be problematic due to the need for human judgment, which may involve intra- and inter-observer variability. Although there is a great need for automated systems working on quantitative metrics to reduce observer variability, there are no such systems for PanNET categorization. Addressing this gap, this study presents a computational pipeline that uses deep learning models to automatically categorize PanNETs for the first time. This pipeline proposes to quantitatively characterize PanNETs by constructing entity-graphs on the cells, and to learn the PanNET categorization using a graph neural network (GNN) trained on these graphs. Different than the previous studies, the proposed model integrates pathology domain knowledge into the GNN construction and training for the purpose of a deeper utilization of the tumor microenvironment and its architectural changes for PanNET categorization. We tested our model on 105 HE stained whole slide images of PanNET tissues. The experiments revealed that this domain knowledge integrated pipeline led to a 76.70% test set F1-score, resulting in significant improvements over its counterparts.</p>","PeriodicalId":55167,"journal":{"name":"Endocrine Pathology","volume":"36 1","pages":"2"},"PeriodicalIF":11.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12022-025-09846-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms that include tumors with different histomorphologic characteristics that can be correlated to sub-categories with different prognoses. In addition to the WHO grading scheme based on tumor proliferative activity, a new parameter based on the scoring of infiltration patterns at the interface of tumor and non-neoplastic parenchyma (tumor-NNP interface) has recently been proposed for PanNET categorization. Despite the known correlations, these categorizations can still be problematic due to the need for human judgment, which may involve intra- and inter-observer variability. Although there is a great need for automated systems working on quantitative metrics to reduce observer variability, there are no such systems for PanNET categorization. Addressing this gap, this study presents a computational pipeline that uses deep learning models to automatically categorize PanNETs for the first time. This pipeline proposes to quantitatively characterize PanNETs by constructing entity-graphs on the cells, and to learn the PanNET categorization using a graph neural network (GNN) trained on these graphs. Different than the previous studies, the proposed model integrates pathology domain knowledge into the GNN construction and training for the purpose of a deeper utilization of the tumor microenvironment and its architectural changes for PanNET categorization. We tested our model on 105 HE stained whole slide images of PanNET tissues. The experiments revealed that this domain knowledge integrated pipeline led to a 76.70% test set F1-score, resulting in significant improvements over its counterparts.
期刊介绍:
Endocrine Pathology publishes original articles on clinical and basic aspects of endocrine disorders. Work with animals or in vitro techniques is acceptable if it is relevant to human normal or abnormal endocrinology. Manuscripts will be considered for publication in the form of original articles, case reports, clinical case presentations, reviews, and descriptions of techniques. Submission of a paper implies that it reports unpublished work, except in abstract form, and is not being submitted simultaneously to another publication. Accepted manuscripts become the sole property of Endocrine Pathology and may not be published elsewhere without written consent from the publisher. All articles are subject to review by experienced referees. The Editors and Editorial Board judge manuscripts suitable for publication, and decisions by the Editors are final.