Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2025-01-23 DOI:10.1186/s41205-025-00249-y
Siril Teja Dukkipati, Mark Driscoll
{"title":"Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine.","authors":"Siril Teja Dukkipati, Mark Driscoll","doi":"10.1186/s41205-025-00249-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices. Analogue models can act as cost saving alternatives to human tissue with better repeatability. The current study proposes a new methodology of spinal biomechanics testing using 3D printable surrogates and characterized its multi-dimensional stiffness in displacement-controlled loading scenarios.</p><p><strong>Methods: </strong>The model consisted of L1 to S1 vertebrae, intervertebral discs (IVD), intertransverse, interspinous, anterior and posterior longitudinal ligaments. The vertebrae and the IVDs were derived from an open-source 3D MRI anatomography database, while the ligaments were modeled based on literature incorporating mounting points on the spinous and transverse processes. Stereolithography 3D printing along with a combination of stiff and soft photopolymer resins were used to manufacture the vertebrae and the soft tissues in the model. Thereafter, displacement-controlled pure moments were applied in the range of ± 15° at 0.5°/sec in all bending modes using a torsion testing machine and a custom pure bending jig. Model rotation and resisting moment under loading were recorded to quantify the rotational stiffness and hysteresis in the model.</p><p><strong>Results: </strong>The model reached a maximum of 5.66Nm and 3.53Nm at 15° flexion-extension, 3.84Nm and 3.93Nm at 15° right and left lateral bending, and 2.45Nm and 2.59Nm at 15° right and left axial rotation respectively. Model RMS error against ex vivo human response was estimated to be 1.57°, 1.64°, 0.82° in flexion-extension, lateral bending and axial rotation respectively. Bilateral symmetry in model stiffness was observed in lateral bending and axial rotation directions.</p><p><strong>Conclusions: </strong>This study presents a reproducible 3D printable L1-S1 lumbar spine and validated it in all three orthogonal bending modes in the range of ± 15° against ex vivo and in silico data. The 3D printed analogue spine model described herein shows promising results, suggesting this model, with further validation, could have potential as a human cadaveric tissue substitute within the explored contexts of use.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"11 1","pages":"3"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755917/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-025-00249-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: There exists a need for validated lumbar spine models in spine biomechanics research. Although cadaveric testing is the current gold standard for spinal implant development, it poses significant issues related to reliability and repeatability due to the wide variability in cadaveric physiologies. Moreover, there are increasing ethical concerns with human dissection practices. Analogue models can act as cost saving alternatives to human tissue with better repeatability. The current study proposes a new methodology of spinal biomechanics testing using 3D printable surrogates and characterized its multi-dimensional stiffness in displacement-controlled loading scenarios.

Methods: The model consisted of L1 to S1 vertebrae, intervertebral discs (IVD), intertransverse, interspinous, anterior and posterior longitudinal ligaments. The vertebrae and the IVDs were derived from an open-source 3D MRI anatomography database, while the ligaments were modeled based on literature incorporating mounting points on the spinous and transverse processes. Stereolithography 3D printing along with a combination of stiff and soft photopolymer resins were used to manufacture the vertebrae and the soft tissues in the model. Thereafter, displacement-controlled pure moments were applied in the range of ± 15° at 0.5°/sec in all bending modes using a torsion testing machine and a custom pure bending jig. Model rotation and resisting moment under loading were recorded to quantify the rotational stiffness and hysteresis in the model.

Results: The model reached a maximum of 5.66Nm and 3.53Nm at 15° flexion-extension, 3.84Nm and 3.93Nm at 15° right and left lateral bending, and 2.45Nm and 2.59Nm at 15° right and left axial rotation respectively. Model RMS error against ex vivo human response was estimated to be 1.57°, 1.64°, 0.82° in flexion-extension, lateral bending and axial rotation respectively. Bilateral symmetry in model stiffness was observed in lateral bending and axial rotation directions.

Conclusions: This study presents a reproducible 3D printable L1-S1 lumbar spine and validated it in all three orthogonal bending modes in the range of ± 15° against ex vivo and in silico data. The 3D printed analogue spine model described herein shows promising results, suggesting this model, with further validation, could have potential as a human cadaveric tissue substitute within the explored contexts of use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography. Development and biomechanical evaluation of a 3D printed analogue of the human lumbar spine. Evaluating the value of 3D-printed bone models with fracture fragments connected by flexible rods for training and preoperative planning. Low-cost male urogenital simulator for penile implant surgery training: a 3D printing approach. Point-of-care additive manufacturing: state of the art and adoption in Spanish hospitals during pre to post COVID-19 era.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1