Integrative multi-omics analysis reveals liver-gut axis adaptation in high-altitude goats.

Haiyan Li, Xin Zhang, Yangzong Zhaxi, Cheng Pan, Zhenzhen Zhang, Junru Pan, Khuram Shahzad, Fengbo Sun, Yang Zhen, Jiacuo Jinmei, Wangsheng Zhao, Tianzeng Song
{"title":"Integrative multi-omics analysis reveals liver-gut axis adaptation in high-altitude goats.","authors":"Haiyan Li, Xin Zhang, Yangzong Zhaxi, Cheng Pan, Zhenzhen Zhang, Junru Pan, Khuram Shahzad, Fengbo Sun, Yang Zhen, Jiacuo Jinmei, Wangsheng Zhao, Tianzeng Song","doi":"10.1016/j.cbd.2025.101422","DOIUrl":null,"url":null,"abstract":"<p><p>The liver-gut axis is an important regulatory axis for the host's metabolic functions. The study of liver gene expression, changes in metabolic products and the regulation of gut microbial communities in plateau animals under harsh environments can reveal the mechanisms by which Tibetan goats adapt to the plateau environment. This study employs transcriptome, metabolome and metagenomic analyses to reveal the differences in genes, metabolism, and gut microbiota between Jianzhou big-eared goats (JBG) and Xizang cashmere goats (TCG), which is of significant importance for improving survival models of high-altitude ruminants. The results showed that there were 553 DEGs in the liver of JBG and TCG. Hepatic metabolomic analysis revealed significant differences in metabolic activity between the JBG and TCG groups, with notable increases in glycerophospholipid and retinol metabolic pathways. The gut microbiota, including Andreesenia, Dielma, Oscillibacter, Agrobacterium, Hyella and Thermosinus, interact with liver metabolites and can regulate the high-altitude adaptability of goats. This study reveals that TCG enhance immune regulation and energy utilization efficiency by regulating liver gene expression, modulating metabolic pathways, and improving gut microbiota, thereby helping TCG maintain healthy survival capabilities in hypoxic and high-radiation environments.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101422"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2025.101422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The liver-gut axis is an important regulatory axis for the host's metabolic functions. The study of liver gene expression, changes in metabolic products and the regulation of gut microbial communities in plateau animals under harsh environments can reveal the mechanisms by which Tibetan goats adapt to the plateau environment. This study employs transcriptome, metabolome and metagenomic analyses to reveal the differences in genes, metabolism, and gut microbiota between Jianzhou big-eared goats (JBG) and Xizang cashmere goats (TCG), which is of significant importance for improving survival models of high-altitude ruminants. The results showed that there were 553 DEGs in the liver of JBG and TCG. Hepatic metabolomic analysis revealed significant differences in metabolic activity between the JBG and TCG groups, with notable increases in glycerophospholipid and retinol metabolic pathways. The gut microbiota, including Andreesenia, Dielma, Oscillibacter, Agrobacterium, Hyella and Thermosinus, interact with liver metabolites and can regulate the high-altitude adaptability of goats. This study reveals that TCG enhance immune regulation and energy utilization efficiency by regulating liver gene expression, modulating metabolic pathways, and improving gut microbiota, thereby helping TCG maintain healthy survival capabilities in hypoxic and high-radiation environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated gut microbiota and multi-omics analysis revealed the growth differences of female giant freshwater prawn (Macrobrachium rosenbergii). Genome-wide identification, evolution, and expression analysis of the bone morphogenetic protein gene family in Myxocyprinus asiaticus. High-throughput screening of thermal tolerant candidate genes in the ivory shell (Babylonia areolata) based on the yeast strain INVSc1. Transcriptome analysis reveals molecular mechanism of Dosinia corrugata in response to acute heat stress. Effects of fasting and inflammatory challenges on the swine hepatic metabolome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1