Effects of fasting and inflammatory challenges on the swine hepatic metabolome.

Andrea N Gomez, Bruce R Southey, Maria B Villamil, Sandra L Rodriguez-Zas
{"title":"Effects of fasting and inflammatory challenges on the swine hepatic metabolome.","authors":"Andrea N Gomez, Bruce R Southey, Maria B Villamil, Sandra L Rodriguez-Zas","doi":"10.1016/j.cbd.2025.101429","DOIUrl":null,"url":null,"abstract":"<p><p>The liver is simultaneously impacted by environmental challenges and modulates the response to these insults. Efforts to understand the effects of stressors on the activity of the liver typically consider one type of challenge (e.g., nutrition, toxin, disease), profile targeted molecules, or study the hepatic disruptions in one sex. The present study characterized hepatic changes in the metabolome of females and males exposed to the nutritional challenge of fasting and inflammatory signals elicited by the viral mimetic Poly(I:C). The hepatic metabolome of pigs was profiled using untargeted liquid chromatography-mass spectrometry analysis enabling the quantification of metabolites. The analysis of pathways enriched among metabolites showing sex-by-distress interactions revealed molecular processes affected by fasting and immune stresses in a sex-specific manner, including SLC-mediated transmembrane transport, the urea cycle, and G-protein coupled receptor signaling. Metabolites differentially abundant across sex-distress groups in the previous pathways included creatine, taurine, and glycine derivatives. Pathways over-represented among metabolites significantly affected by distress included glucose homeostasis, the Krebs cycle, and the metabolism of water-soluble vitamins, with key metabolites including S-adenosylmethionine, histidine, glycerophosphocholine, and lactic acid. These results indicate that 24-h fasting, and low-grade systemic inflammation modulate the liver metabolism. The detection of metabolic disruption that varies with sex enforces the need to develop therapies that can restore hepatic homeostasis in females and males.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101429"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2025.101429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The liver is simultaneously impacted by environmental challenges and modulates the response to these insults. Efforts to understand the effects of stressors on the activity of the liver typically consider one type of challenge (e.g., nutrition, toxin, disease), profile targeted molecules, or study the hepatic disruptions in one sex. The present study characterized hepatic changes in the metabolome of females and males exposed to the nutritional challenge of fasting and inflammatory signals elicited by the viral mimetic Poly(I:C). The hepatic metabolome of pigs was profiled using untargeted liquid chromatography-mass spectrometry analysis enabling the quantification of metabolites. The analysis of pathways enriched among metabolites showing sex-by-distress interactions revealed molecular processes affected by fasting and immune stresses in a sex-specific manner, including SLC-mediated transmembrane transport, the urea cycle, and G-protein coupled receptor signaling. Metabolites differentially abundant across sex-distress groups in the previous pathways included creatine, taurine, and glycine derivatives. Pathways over-represented among metabolites significantly affected by distress included glucose homeostasis, the Krebs cycle, and the metabolism of water-soluble vitamins, with key metabolites including S-adenosylmethionine, histidine, glycerophosphocholine, and lactic acid. These results indicate that 24-h fasting, and low-grade systemic inflammation modulate the liver metabolism. The detection of metabolic disruption that varies with sex enforces the need to develop therapies that can restore hepatic homeostasis in females and males.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated gut microbiota and multi-omics analysis revealed the growth differences of female giant freshwater prawn (Macrobrachium rosenbergii). Genome-wide identification, evolution, and expression analysis of the bone morphogenetic protein gene family in Myxocyprinus asiaticus. High-throughput screening of thermal tolerant candidate genes in the ivory shell (Babylonia areolata) based on the yeast strain INVSc1. Transcriptome analysis reveals molecular mechanism of Dosinia corrugata in response to acute heat stress. Effects of fasting and inflammatory challenges on the swine hepatic metabolome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1