Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL Biomaterials research Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0134
Zhiyang Ren, Shuhan Tang, Jia Wang, Shuqing Lv, Kai Zheng, Yong Xu, Ke Li
{"title":"Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations.","authors":"Zhiyang Ren, Shuhan Tang, Jia Wang, Shuqing Lv, Kai Zheng, Yong Xu, Ke Li","doi":"10.34133/bmr.0134","DOIUrl":null,"url":null,"abstract":"<p><p>As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored. The review focuses on the principles and the latest progress of using BGs for skin tissue repair, highlighting BGs' special performance requirements, including biological activity, biocompatibility, biodegradability, and antibacterial properties, emphasizing their potential for skin tissue repair. In addition, BGs play a substantial role in regulating various inflammatory cells (neutrophils, macrophages, mast cells, etc.) and tissue repair cells [fibroblasts, vascular endothelial cells, mesenchymal stem cells (MSCs), etc.] involved in wound healing. The review also covers recent developments in composite materials incorporating BGs, demonstrating their ability to promote angiogenesis, inhibit wound biofilms, and improve inflammatory responses in chronic wounds. Furthermore, BGs have shown effectiveness in promoting epithelial regeneration and collagen deposition in burn wounds as well as their applications in scar management and post-tumor resection wound care. Finally, we summarize our views on challenges and directions in the emerging field of BGs for skin tissue regeneration research in the future.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0134"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a complex and dynamically regulated process, wound healing is collaboratively carried out by multiple types of cells. However, the precise mechanisms by which these cells contribute to immune regulation are not yet fully understood. Although research on bone regeneration has been quite extensive, the application of bioactive glass (BG) in skin tissue repair remains still relatively underexplored. The review focuses on the principles and the latest progress of using BGs for skin tissue repair, highlighting BGs' special performance requirements, including biological activity, biocompatibility, biodegradability, and antibacterial properties, emphasizing their potential for skin tissue repair. In addition, BGs play a substantial role in regulating various inflammatory cells (neutrophils, macrophages, mast cells, etc.) and tissue repair cells [fibroblasts, vascular endothelial cells, mesenchymal stem cells (MSCs), etc.] involved in wound healing. The review also covers recent developments in composite materials incorporating BGs, demonstrating their ability to promote angiogenesis, inhibit wound biofilms, and improve inflammatory responses in chronic wounds. Furthermore, BGs have shown effectiveness in promoting epithelial regeneration and collagen deposition in burn wounds as well as their applications in scar management and post-tumor resection wound care. Finally, we summarize our views on challenges and directions in the emerging field of BGs for skin tissue regeneration research in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance. Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Research Progress on Extracellular Matrix-Based Composite Materials in Antibacterial Field. Harnessing the Intradermal Delivery of Hair Follicle Dermal Papilla Cell Spheroids for Hair Follicle Regeneration in Nude Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1