Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance.

IF 8.1 Q1 ENGINEERING, BIOMEDICAL Biomaterials research Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.34133/bmr.0137
Qiulan Li, Mianfeng Yao, Yunxu Yang, Bixiao Lin, Hongio Chen, Huixia Luo, Chao Zhang, Yanhao Huang, Yutao Jian, Ke Zhao, Xiaodong Wang
{"title":"Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance.","authors":"Qiulan Li, Mianfeng Yao, Yunxu Yang, Bixiao Lin, Hongio Chen, Huixia Luo, Chao Zhang, Yanhao Huang, Yutao Jian, Ke Zhao, Xiaodong Wang","doi":"10.34133/bmr.0137","DOIUrl":null,"url":null,"abstract":"<p><p>Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the \"surface\" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the \"inner\" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high \"inner\" structure stability and \"surface\" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl<sub>12</sub>O<sub>19</sub> and equiaxed Al<sub>2</sub>O<sub>3</sub> were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr<sup>2+</sup>), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr<sup>2+</sup>/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0137"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials. In this study, we aim to develop a zirconia composite abutment with high "inner" structure stability and "surface" bioactivities simultaneously and to explore the mechanism of performance improvement. Therefore, elongated SrAl12O19 and equiaxed Al2O3 were introduced into the zirconia matrix by using the Pechini method. Reinforcements of different shapes can promote the density, reduce the grain size, and increase the phase stability of composite ceramics, which improves the fracture toughness and LTD susceptibility. In addition, the released strontium ions (Sr2+), without sacrificing the mechanical properties of the material, could activate the biological capacity of the zirconia surface by activating the M2 polarization of macrophages through the Sr2+/calcium-sensing receptor/SH3 domain-binding protein 5 axis, thereby promoting the collagen matrix synthesis of fibroblasts and the angiogenesis of vascular endothelial cells. This successful case proposes a novel strategy for the development of advanced high-strength and bioactive all-ceramic materials by introducing reinforcements containing biofunctional elements into the ceramic matrix. The approach paves the way for the widespread application of such all-ceramic materials in soft-tissue-related areas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gingival Soft Tissue Integrative Zirconia Abutments with High Fracture Toughness and Low-Temperature Degradation Resistance. Bioactive Glasses: Advancing Skin Tissue Repair through Multifunctional Mechanisms and Innovations. Hierarchy Reproduction: Multiphasic Strategies for Tendon/Ligament-Bone Junction Repair. Research Progress on Extracellular Matrix-Based Composite Materials in Antibacterial Field. Harnessing the Intradermal Delivery of Hair Follicle Dermal Papilla Cell Spheroids for Hair Follicle Regeneration in Nude Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1