{"title":"Conic sections on the sky: Shadows of linearly superrotated black holes","authors":"Feng-Li Lin, Avani Patel, Jason Payne","doi":"10.1103/physrevd.111.024054","DOIUrl":null,"url":null,"abstract":"Soft hairs are an intrinsic infrared feature of a black hole, which may also affect near-horizon physics. In this work, we study some of the subtleties surrounding one of the primary observables with which we can study their effects in the context of Einstein’s gravity: the black hole shadow. First, we clarify the singular pathology associated with black holes with soft hairs and demonstrate that the metrics of linearly superrotated black holes are free of near-zone pathologies due to appropriate asymptotic falloff conditions being imposed on the event horizon. We then analytically construct the photon orbits around such black holes, derive the shadow equation for near-zone observers, and find that the linear superrotation hairs deform the circular shadow of a bald Schwarzchild black hole into an ellipse. This is in sharp contrast to their supertranslated counterparts, which only shift the position of the center of the circular shadow but do not change its shape. Our results suggest a richness to the observable effects due to the infrared structures of Einstein’s gravity. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"15 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.024054","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Soft hairs are an intrinsic infrared feature of a black hole, which may also affect near-horizon physics. In this work, we study some of the subtleties surrounding one of the primary observables with which we can study their effects in the context of Einstein’s gravity: the black hole shadow. First, we clarify the singular pathology associated with black holes with soft hairs and demonstrate that the metrics of linearly superrotated black holes are free of near-zone pathologies due to appropriate asymptotic falloff conditions being imposed on the event horizon. We then analytically construct the photon orbits around such black holes, derive the shadow equation for near-zone observers, and find that the linear superrotation hairs deform the circular shadow of a bald Schwarzchild black hole into an ellipse. This is in sharp contrast to their supertranslated counterparts, which only shift the position of the center of the circular shadow but do not change its shape. Our results suggest a richness to the observable effects due to the infrared structures of Einstein’s gravity. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.