{"title":"A Non-Equilibrium Species Distribution Model Reveals Unprecedented Depth of Time Lag Responses to Past Environmental Change Trajectories","authors":"Etienne Lalechère, Ronan Marrec, Jonathan Lenoir","doi":"10.1111/ele.70040","DOIUrl":null,"url":null,"abstract":"Previous studies have demonstrated legacy effects of current species distributions to past environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, we have developed a non-equilibrium Species Distribution Modelling (SDM) approach quantifying the temporal extent that must be taken into account to capture 95% of the effect that a given time series of past environmental conditions has on the current distribution of a species. We applied this approach on the distribution of 92 European forest birds in response to past trajectories of change in forest cover and climate. We found that non-equilibrium SDMs outperformed traditional SDMs for 95% of the species. Non-equilibrium SDMs suggest unprecedented long-lasting effects of past global changes (average time lag extent ranged from 9 to 231 years). This framework can help to relax the equilibrium hypothesis of traditional SDMs and to improve future predictions of biodiversity redistribution in response to global changes.","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"13 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ele.70040","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have demonstrated legacy effects of current species distributions to past environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, we have developed a non-equilibrium Species Distribution Modelling (SDM) approach quantifying the temporal extent that must be taken into account to capture 95% of the effect that a given time series of past environmental conditions has on the current distribution of a species. We applied this approach on the distribution of 92 European forest birds in response to past trajectories of change in forest cover and climate. We found that non-equilibrium SDMs outperformed traditional SDMs for 95% of the species. Non-equilibrium SDMs suggest unprecedented long-lasting effects of past global changes (average time lag extent ranged from 9 to 231 years). This framework can help to relax the equilibrium hypothesis of traditional SDMs and to improve future predictions of biodiversity redistribution in response to global changes.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.