Vegetation–climate feedbacks across scales

IF 4.1 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Annals of the New York Academy of Sciences Pub Date : 2025-01-24 DOI:10.1111/nyas.15286
Diego G. Miralles, Jordi Vilà-Guerau de Arellano, Tim R. McVicar, Miguel D. Mahecha
{"title":"Vegetation–climate feedbacks across scales","authors":"Diego G. Miralles, Jordi Vilà-Guerau de Arellano, Tim R. McVicar, Miguel D. Mahecha","doi":"10.1111/nyas.15286","DOIUrl":null,"url":null,"abstract":"Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO<sub>2</sub> concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes. This influence propagates through the atmosphere, from microclimate scales to the entire atmospheric boundary layer, subsequently impacting large-scale circulation and the global transport of heat and moisture. Understanding the feedbacks between vegetation and atmosphere across multiple scales is crucial for predicting the influence of land use and land cover changes, and for accurately representing these processes in climate models. This review discusses the biophysical and biogeochemical mechanisms through which vegetation modulates climate across spatial and temporal scales. Particularly, we evaluate the influence of vegetation on circulation patterns, precipitation, and temperature, considering both long-term trends and extreme events, such as droughts and heatwaves. Our goal is to highlight the state of science and review recent studies that may help advance our collective understanding of vegetation feedbacks and the role they play in climate.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"19 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15286","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO2 concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes. This influence propagates through the atmosphere, from microclimate scales to the entire atmospheric boundary layer, subsequently impacting large-scale circulation and the global transport of heat and moisture. Understanding the feedbacks between vegetation and atmosphere across multiple scales is crucial for predicting the influence of land use and land cover changes, and for accurately representing these processes in climate models. This review discusses the biophysical and biogeochemical mechanisms through which vegetation modulates climate across spatial and temporal scales. Particularly, we evaluate the influence of vegetation on circulation patterns, precipitation, and temperature, considering both long-term trends and extreme events, such as droughts and heatwaves. Our goal is to highlight the state of science and review recent studies that may help advance our collective understanding of vegetation feedbacks and the role they play in climate.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
期刊最新文献
Vegetation–climate feedbacks across scales MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning Math-anxious people suffer more in math-related events: The perspective of reward processing on motivated behavior Digital tools and technologies used in food fortification: A scoping review Spiny mice (Acomys) have evolved cellular features to support regenerative healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1