Benjamin Colmey, Rodrigo T. Paulino, Gaspard Beaufort, David G. Cooke
{"title":"Sub-cycle nanotip field emission of electrons driven by air plasma generated THz pulses","authors":"Benjamin Colmey, Rodrigo T. Paulino, Gaspard Beaufort, David G. Cooke","doi":"10.1063/5.0238527","DOIUrl":null,"url":null,"abstract":"Terahertz pulses generated by two-color laser plasmas have reported peak field strengths exceeding MV/cm, and when illuminating metal nanotips, the near-field enhancement at the tip apex should result in extremely high bunch charges and electron energies via sub-cycle cold-field emission. Here, electron emission from tungsten nanotips driven by THz pulses generated by a long filament air-plasma is reported. Electron energies up to 1.1 keV and bunch charges up to 2×105 electrons per pulse were detected, well below values expected for peak field calculated via the time-averaged Poynting vector. Investigations revealed a failure in the use of the time-averaged Poynting vector when applied to long filament THz pulses, due to spatiotemporal restructuring of the THz pulse in the focus. Accounting for this restructuring significantly reduces the field strength to approximately 160 kV/cm, consistent with the observed electron bunch charges, peak energies, and their dependence on the tip position in the THz focus. Despite these findings, our results surpass previous THz plasma-driven electron generation by an order of magnitude in both electron energy and bunch charge, and a path to increasing these by an additional order of magnitude by modification of the THz optics is proposed.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"34 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0238527","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Terahertz pulses generated by two-color laser plasmas have reported peak field strengths exceeding MV/cm, and when illuminating metal nanotips, the near-field enhancement at the tip apex should result in extremely high bunch charges and electron energies via sub-cycle cold-field emission. Here, electron emission from tungsten nanotips driven by THz pulses generated by a long filament air-plasma is reported. Electron energies up to 1.1 keV and bunch charges up to 2×105 electrons per pulse were detected, well below values expected for peak field calculated via the time-averaged Poynting vector. Investigations revealed a failure in the use of the time-averaged Poynting vector when applied to long filament THz pulses, due to spatiotemporal restructuring of the THz pulse in the focus. Accounting for this restructuring significantly reduces the field strength to approximately 160 kV/cm, consistent with the observed electron bunch charges, peak energies, and their dependence on the tip position in the THz focus. Despite these findings, our results surpass previous THz plasma-driven electron generation by an order of magnitude in both electron energy and bunch charge, and a path to increasing these by an additional order of magnitude by modification of the THz optics is proposed.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.