The Integration of Bayesian Regression Analysis and Bayesian Process Tracing in Mixed-Methods Research

IF 6.5 2区 社会学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Sociological Methods & Research Pub Date : 2025-01-23 DOI:10.1177/00491241241295336
Lion Behrens, Ingo Rohlfing
{"title":"The Integration of Bayesian Regression Analysis and Bayesian Process Tracing in Mixed-Methods Research","authors":"Lion Behrens, Ingo Rohlfing","doi":"10.1177/00491241241295336","DOIUrl":null,"url":null,"abstract":"In this article, we develop a mixed-methods design that combines Bayesian regression with Bayesian process tracing. A fully Bayesian multimethod design allows one to include empirical knowledge at each stage of the analysis and to coherently transfer information from the quantitative to the qualitative analysis, and vice versa. We present a complete mixed-methods workflow explaining how this is accomplished and how to integrate both methods. It is demonstrated how to use the posterior highest density interval and the Bayes factor from the regression analysis to update the prior level of confidence about what mechanisms possibly connect the cause to the outcome. It is further shown how to choose cases for the qualitative analysis through posterior predictive sampling. We illustrate this approach with an empirical analysis of colonial development and compare it with alternative designs, including nested analysis and the Bayesian integration of qualitative and quantitative methods.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"12 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241241295336","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we develop a mixed-methods design that combines Bayesian regression with Bayesian process tracing. A fully Bayesian multimethod design allows one to include empirical knowledge at each stage of the analysis and to coherently transfer information from the quantitative to the qualitative analysis, and vice versa. We present a complete mixed-methods workflow explaining how this is accomplished and how to integrate both methods. It is demonstrated how to use the posterior highest density interval and the Bayes factor from the regression analysis to update the prior level of confidence about what mechanisms possibly connect the cause to the outcome. It is further shown how to choose cases for the qualitative analysis through posterior predictive sampling. We illustrate this approach with an empirical analysis of colonial development and compare it with alternative designs, including nested analysis and the Bayesian integration of qualitative and quantitative methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.30
自引率
3.20%
发文量
40
期刊介绍: Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.
期刊最新文献
The Integration of Bayesian Regression Analysis and Bayesian Process Tracing in Mixed-Methods Research Improving Cross-Cultural Comparability of Measures on Gender and Age Stereotypes by Means of Piloting Methods The Rise in Occupational Coding Mismatches and Occupational Mobility, 1991–2020 Using Google Maps to Generate Organizational Sampling Frames Examining Variation in Survey Costs Across Surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1