Alex R. DeCasien, Kathryn Tsai, Siyuan Liu, Adam Thomas, Armin Raznahan
{"title":"Evolutionary divergence between homologous X–Y chromosome genes shapes sex-biased biology","authors":"Alex R. DeCasien, Kathryn Tsai, Siyuan Liu, Adam Thomas, Armin Raznahan","doi":"10.1038/s41559-024-02627-x","DOIUrl":null,"url":null,"abstract":"<p>Sex chromosomes are a fundamental aspect of sex-biased biology, but the extent to which homologous X–Y gene pairs (‘the gametologs’) contribute to sex-biased phenotypes remains hotly debated. Although these genes tend to exhibit large sex differences in expression throughout the body (XX females can express both X members, and XY males can express one X and one Y member), there is conflicting evidence regarding the degree of functional divergence between the X and Y members. Here we develop and apply co-expression fingerprint analysis to characterize functional divergence between the X and Y members of 17 gametolog gene pairs across >40 human tissues. Gametolog pairs exhibit functional divergence between the sexes that is driven by divergence between the X versus Y members (assayed in males), and this within-pair divergence is greatest among pairs with evolutionarily distant X and Y members. These patterns reflect that X versus Y gametologs show coordinated patterns of asymmetric coupling with large sets of autosomal genes, which are enriched for functional pathways and gene sets implicated in sex-biased biology and disease. Our findings suggest that the X versus Y gametologs have diverged in function and prioritize specific gametolog pairs for future targeted experimental studies.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"28 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-024-02627-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sex chromosomes are a fundamental aspect of sex-biased biology, but the extent to which homologous X–Y gene pairs (‘the gametologs’) contribute to sex-biased phenotypes remains hotly debated. Although these genes tend to exhibit large sex differences in expression throughout the body (XX females can express both X members, and XY males can express one X and one Y member), there is conflicting evidence regarding the degree of functional divergence between the X and Y members. Here we develop and apply co-expression fingerprint analysis to characterize functional divergence between the X and Y members of 17 gametolog gene pairs across >40 human tissues. Gametolog pairs exhibit functional divergence between the sexes that is driven by divergence between the X versus Y members (assayed in males), and this within-pair divergence is greatest among pairs with evolutionarily distant X and Y members. These patterns reflect that X versus Y gametologs show coordinated patterns of asymmetric coupling with large sets of autosomal genes, which are enriched for functional pathways and gene sets implicated in sex-biased biology and disease. Our findings suggest that the X versus Y gametologs have diverged in function and prioritize specific gametolog pairs for future targeted experimental studies.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.