Chenliang Zhang, Zhongyi Jin, Kam K.H. Ng, Tie-Qiao Tang, Fangni Zhang, Wei Liu
{"title":"Predictive and prescriptive analytics for robust airport gate assignment planning in airside operations under uncertainty","authors":"Chenliang Zhang, Zhongyi Jin, Kam K.H. Ng, Tie-Qiao Tang, Fangni Zhang, Wei Liu","doi":"10.1016/j.tre.2025.103963","DOIUrl":null,"url":null,"abstract":"With the increasing demand for air transport, numerous airports have exceeded their available capacity, resulting in more frequent congestion and disruptions. Therefore, airport gate assignment plans must prioritise robustness to alleviate congestion, absorb disruptions, and maintain high service levels. Given the uncertainties in airside operations, providing robust decisions is challenging. To address this issue, we employ two prescriptive analytics approaches to develop airport gate assignment plans. These approaches leverage historical data, auxiliary data, and machine learning (ML) methods to enhance decision effectiveness and robustness. Initially, we adopt a predict-then-optimise approach, utilising ML methods to predict aircraft arrival times. These predictions are then used as input for a deterministic model of the airport gate assignment problem (AGAP). Subsequently, we explore an estimate-then-optimise approach. In this approach, we first estimate the distribution of uncertain aircraft arrival times using ML methods. Then, we solve the two-stage stochastic programming model for the AGAP based on the estimated distribution. Given the complexity of the estimate-then-optimise approach, we develop an effective scenario selection strategy, the cluster-based scenario reduction (CSR) method, to maintain tractability while ensuring decision performance. Concurrently, we develop an efficient exact solution method, the Benders-based branch-and-cut (BBC) method, to effectively handle larger and more complex test instances. Numerical experiments using real-world data from Xiamen Gaoqi International Airport demonstrate the effectiveness of the CSR and BBC methods. The CSR method performs better with a smaller sample size, while the BBC method significantly enhances computational performance compared to commercial solvers. These proposed methods improve the tractability and scalability of the estimate-then-optimise approach. Notably, the estimate-then-optimise approach outperforms the predict-then-optimise approach driven by the same ML method. Furthermore, we find that estimate-then-optimise approaches, supported by well-performing ML methods and scenario selection strategies, provide superior performance compared to other optimisation approaches.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"13 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2025.103963","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing demand for air transport, numerous airports have exceeded their available capacity, resulting in more frequent congestion and disruptions. Therefore, airport gate assignment plans must prioritise robustness to alleviate congestion, absorb disruptions, and maintain high service levels. Given the uncertainties in airside operations, providing robust decisions is challenging. To address this issue, we employ two prescriptive analytics approaches to develop airport gate assignment plans. These approaches leverage historical data, auxiliary data, and machine learning (ML) methods to enhance decision effectiveness and robustness. Initially, we adopt a predict-then-optimise approach, utilising ML methods to predict aircraft arrival times. These predictions are then used as input for a deterministic model of the airport gate assignment problem (AGAP). Subsequently, we explore an estimate-then-optimise approach. In this approach, we first estimate the distribution of uncertain aircraft arrival times using ML methods. Then, we solve the two-stage stochastic programming model for the AGAP based on the estimated distribution. Given the complexity of the estimate-then-optimise approach, we develop an effective scenario selection strategy, the cluster-based scenario reduction (CSR) method, to maintain tractability while ensuring decision performance. Concurrently, we develop an efficient exact solution method, the Benders-based branch-and-cut (BBC) method, to effectively handle larger and more complex test instances. Numerical experiments using real-world data from Xiamen Gaoqi International Airport demonstrate the effectiveness of the CSR and BBC methods. The CSR method performs better with a smaller sample size, while the BBC method significantly enhances computational performance compared to commercial solvers. These proposed methods improve the tractability and scalability of the estimate-then-optimise approach. Notably, the estimate-then-optimise approach outperforms the predict-then-optimise approach driven by the same ML method. Furthermore, we find that estimate-then-optimise approaches, supported by well-performing ML methods and scenario selection strategies, provide superior performance compared to other optimisation approaches.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.