2-Propanol Suspension Method to Increase Acetylcholinesterase and Flow Stability on μPADs.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-01-23 DOI:10.1021/acsabm.4c01879
Akinori Yamaguchi, Shota Oyama, Akihiko Ishida, Takanori Enomoto, Nobuyuki Sanari, Hajime Miyaguchi, Manabu Tokeshi
{"title":"2-Propanol Suspension Method to Increase Acetylcholinesterase and Flow Stability on μPADs.","authors":"Akinori Yamaguchi, Shota Oyama, Akihiko Ishida, Takanori Enomoto, Nobuyuki Sanari, Hajime Miyaguchi, Manabu Tokeshi","doi":"10.1021/acsabm.4c01879","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring detection performance and shelf life is crucial for analytical devices. Advances in materials and reaction mechanisms have improved detection performance, yet extending the operational lifetime of microfluidic paper-based analytical devices (μPADs)─especially those reliant on sensitive enzymes─remains a challenge. Here, we present an alternative to air-drying and lyophilization: loading enzymes suspended in 2-propanol (iPrOH). By suspending the enzyme in iPrOH, we circumvent the enzyme activity losses commonly associated with freeze-thawing and freeze-drying. Accelerated aging tests, supported by statistical analyses of long-term activity retention (including comparisons over multiple time points), indicate that while conventional methods do not sustain consistent superiority, the iPrOH suspension method maintains higher enzymatic activity over extended periods. By avoiding stabilizers and circumventing the limitations of other techniques, our method enables μPADs to achieve both longevity and stable fluid flow. Thus, we provide a more robust, on-site analytical platform capable of reliable on-site detection.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring detection performance and shelf life is crucial for analytical devices. Advances in materials and reaction mechanisms have improved detection performance, yet extending the operational lifetime of microfluidic paper-based analytical devices (μPADs)─especially those reliant on sensitive enzymes─remains a challenge. Here, we present an alternative to air-drying and lyophilization: loading enzymes suspended in 2-propanol (iPrOH). By suspending the enzyme in iPrOH, we circumvent the enzyme activity losses commonly associated with freeze-thawing and freeze-drying. Accelerated aging tests, supported by statistical analyses of long-term activity retention (including comparisons over multiple time points), indicate that while conventional methods do not sustain consistent superiority, the iPrOH suspension method maintains higher enzymatic activity over extended periods. By avoiding stabilizers and circumventing the limitations of other techniques, our method enables μPADs to achieve both longevity and stable fluid flow. Thus, we provide a more robust, on-site analytical platform capable of reliable on-site detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Biocompatible EDOT-Pyrrole Conjugated Conductive Polymer Coating for Augmenting Cell Attachment, Activity, and Differentiation. Melatonin-Loaded Hydrogel Modulates Circadian Rhythms and Alleviates Oxidative Stress and Inflammation to Promote Wound Healing. 2-Propanol Suspension Method to Increase Acetylcholinesterase and Flow Stability on μPADs. Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane). Multifunctional Near Infrared Polymer Dots for Enhanced Synergistic Photodynamic/Photothermal Effect In Vitro.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1