{"title":"Quantum anomalous Hall effect in a nonmagnetic bismuth monolayer with a high Chern number.","authors":"Zequn Zhang, Runhan Li, Yingxi Bai, Yilin Zhang, Baibiao Huang, Ying Dai, Chengwang Niu","doi":"10.1039/d4mh01713g","DOIUrl":null,"url":null,"abstract":"<p><p>The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states. Moreover, based on the first-principles calculations, we identify tetragonal bismuth as an experimentally feasible candidate of the proposed light-induced QAHE, where remarkably a topological phase transition from the 2D <sub>2</sub> topological insulator to QAHE occurs. Our results open new opportunities to realize exotic QAH physics that increases the feasibility of experimental realization and applications in spintronics devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01713g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states. Moreover, based on the first-principles calculations, we identify tetragonal bismuth as an experimentally feasible candidate of the proposed light-induced QAHE, where remarkably a topological phase transition from the 2D 2 topological insulator to QAHE occurs. Our results open new opportunities to realize exotic QAH physics that increases the feasibility of experimental realization and applications in spintronics devices.