Construction and evaluation of a triage assessment model for patients with acute non-traumatic chest pain: mixed retrospective and prospective observational study.

IF 2.3 3区 医学 Q1 EMERGENCY MEDICINE BMC Emergency Medicine Pub Date : 2025-01-23 DOI:10.1186/s12873-025-01176-1
Xuan Zhou, Gangren Jian, Yuefang He, Yating Huang, Jie Zhang, Shengfang Wang, Yunxian Wang, Ruofei Zheng
{"title":"Construction and evaluation of a triage assessment model for patients with acute non-traumatic chest pain: mixed retrospective and prospective observational study.","authors":"Xuan Zhou, Gangren Jian, Yuefang He, Yating Huang, Jie Zhang, Shengfang Wang, Yunxian Wang, Ruofei Zheng","doi":"10.1186/s12873-025-01176-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute non-traumatic chest pain is one of the common complaints in the emergency department and is closely associated with fatal disease. Triage assessment urgently requires the use of simple, rapid tools to screen patients with chest pain for high-risk condition to improve patient outcomes.</p><p><strong>Methods: </strong>After data preprocessing and feature selection, univariate and multiple logistic regression analyses were performed to identify potential predictors associated with acute non-traumatic chest pain. A nomogram was built based on the predictors, and an internal evaluation was performed using bootstrap resampling methods. The model was also externally validated in this center. Furthermore, the model results were risk-stratified using the decision tree analysis to explore the corresponding triage level. Subsequently, we developed an online visualization tool based on the model to assess the risk of high risk in patients with chest pain.</p><p><strong>Results: </strong>Multiple logistic regression analysis showed that age, smoking, coronary heart disease, hypertension, diabetes, hyperlipidemia, pain site, concomitant symptoms, and electrocardiograph, all of which are independent predictors of high-risk chest pain patients. The AUC of our model in the development and validation groups was 0.919 (95%CI: 0.891 ~ 0.974) and 0.904 (95%CI: 0.855 ~ 0.952). Moreover, our model demonstrated better outcomes in terms of accuracy/sensitivity in both cohorts (81.9%/85.2% and 94.8%/78.5%). The calibration curve shows a high degree of agreement between the predicted and actual probabilities. Decision curve analysis clarified that our model had higher net gains across the entire range of clinical thresholds. Afterward, we developed an online tool, which is used in the triage link to facilitate nurses to screen people with high-risk chest pain.</p><p><strong>Conclusion: </strong>We proposed an accurate model to predict the high-risk populations with chest pain, based on which a simple and rapid online tool was developed and provided substantial support for its application as a decision-making tool for the emergency department.</p><p><strong>Registration: </strong>The study protocol was approved by the Ethics Committee Board of Fujian Provincial Hospital.</p><p><strong>Clinical trial registration number: </strong>ChiCTR2200061918.</p>","PeriodicalId":9002,"journal":{"name":"BMC Emergency Medicine","volume":"25 1","pages":"12"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Emergency Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12873-025-01176-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute non-traumatic chest pain is one of the common complaints in the emergency department and is closely associated with fatal disease. Triage assessment urgently requires the use of simple, rapid tools to screen patients with chest pain for high-risk condition to improve patient outcomes.

Methods: After data preprocessing and feature selection, univariate and multiple logistic regression analyses were performed to identify potential predictors associated with acute non-traumatic chest pain. A nomogram was built based on the predictors, and an internal evaluation was performed using bootstrap resampling methods. The model was also externally validated in this center. Furthermore, the model results were risk-stratified using the decision tree analysis to explore the corresponding triage level. Subsequently, we developed an online visualization tool based on the model to assess the risk of high risk in patients with chest pain.

Results: Multiple logistic regression analysis showed that age, smoking, coronary heart disease, hypertension, diabetes, hyperlipidemia, pain site, concomitant symptoms, and electrocardiograph, all of which are independent predictors of high-risk chest pain patients. The AUC of our model in the development and validation groups was 0.919 (95%CI: 0.891 ~ 0.974) and 0.904 (95%CI: 0.855 ~ 0.952). Moreover, our model demonstrated better outcomes in terms of accuracy/sensitivity in both cohorts (81.9%/85.2% and 94.8%/78.5%). The calibration curve shows a high degree of agreement between the predicted and actual probabilities. Decision curve analysis clarified that our model had higher net gains across the entire range of clinical thresholds. Afterward, we developed an online tool, which is used in the triage link to facilitate nurses to screen people with high-risk chest pain.

Conclusion: We proposed an accurate model to predict the high-risk populations with chest pain, based on which a simple and rapid online tool was developed and provided substantial support for its application as a decision-making tool for the emergency department.

Registration: The study protocol was approved by the Ethics Committee Board of Fujian Provincial Hospital.

Clinical trial registration number: ChiCTR2200061918.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Emergency Medicine
BMC Emergency Medicine Medicine-Emergency Medicine
CiteScore
3.50
自引率
8.00%
发文量
178
审稿时长
29 weeks
期刊介绍: BMC Emergency Medicine is an open access, peer-reviewed journal that considers articles on all urgent and emergency aspects of medicine, in both practice and basic research. In addition, the journal covers aspects of disaster medicine and medicine in special locations, such as conflict areas and military medicine, together with articles concerning healthcare services in the emergency departments.
期刊最新文献
Construction and evaluation of a triage assessment model for patients with acute non-traumatic chest pain: mixed retrospective and prospective observational study. Design and psychometric testing of a moral intelligence instrument for pre-hospital emergency medical services personnel: a sequential-exploratory mixed-method study. Empowerment of volunteer nursing service providers during disasters: A qualitative study. Enhancing trauma triage in low-resource settings using machine learning: a performance comparison with the Kampala Trauma Score. Incidence and outcomes of dysnatremia in crush injury patients admitted to Türkiye's largest hospital following the Kahramanmaraş earthquake.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1