Enhancing trauma triage in low-resource settings using machine learning: a performance comparison with the Kampala Trauma Score.

IF 2.3 3区 医学 Q1 EMERGENCY MEDICINE BMC Emergency Medicine Pub Date : 2025-01-23 DOI:10.1186/s12873-025-01175-2
Mike Nsubuga, Timothy Mwanje Kintu, Helen Please, Kelsey Stewart, Sergio M Navarro
{"title":"Enhancing trauma triage in low-resource settings using machine learning: a performance comparison with the Kampala Trauma Score.","authors":"Mike Nsubuga, Timothy Mwanje Kintu, Helen Please, Kelsey Stewart, Sergio M Navarro","doi":"10.1186/s12873-025-01175-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Traumatic injuries are a leading cause of morbidity and mortality globally, with a disproportionate impact on populations in low- and middle-income countries (LMICs). The Kampala Trauma Score (KTS) is frequently used for triage in these settings, though its predictive accuracy remains under debate. This study evaluates the effectiveness of machine learning (ML) models in predicting triage decisions and compares their performance to the KTS.</p><p><strong>Methods: </strong>Data from 4,109 trauma patients at Soroti Regional Referral Hospital, a rural hospital in Uganda, were used to train and evaluate four ML models: Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), and Support Vector Machine (SVM). The models were assessed in regard to accuracy, precision, recall, F1-score, and AUC-ROC (Area Under the Curve of the Receiver Operating Characteristic curve). Additionally, a multinomial logistic regression model using the KTS was developed as a benchmark for the ML models.</p><p><strong>Results: </strong>All four ML models outperformed the KTS model, with the RF and GB both achieving AUC-ROC values of 0.91, compared to 0.62 (95% CI: 0.61-0.63) for the KTS (p < 0.01). The RF model demonstrated the highest accuracy at 0.69 (95% CI: 0.68-0.70), while the KTS-based model showed an accuracy of 0.54 (95% CI: 0.52-0.55). Sex, hours to hospital, and age were identified as the most significant predictors in both ML models.</p><p><strong>Conclusion: </strong>ML models demonstrated superior predictive capabilities over the KTS in predicting triage decisions, even when utilising a limited set of injury information about the patients. These findings suggest a promising opportunity to advance trauma care in LMICs by integrating ML into triage decision-making. By leveraging basic demographic and clinical data, these models could provide a foundation for improved resource allocation and patient outcomes, addressing the unique challenges of resource-limited settings. However, further validation is essential to ensure their reliability and integration into clinical practice.</p>","PeriodicalId":9002,"journal":{"name":"BMC Emergency Medicine","volume":"25 1","pages":"14"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Emergency Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12873-025-01175-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Traumatic injuries are a leading cause of morbidity and mortality globally, with a disproportionate impact on populations in low- and middle-income countries (LMICs). The Kampala Trauma Score (KTS) is frequently used for triage in these settings, though its predictive accuracy remains under debate. This study evaluates the effectiveness of machine learning (ML) models in predicting triage decisions and compares their performance to the KTS.

Methods: Data from 4,109 trauma patients at Soroti Regional Referral Hospital, a rural hospital in Uganda, were used to train and evaluate four ML models: Logistic Regression (LR), Random Forest (RF), Gradient Boosting (GB), and Support Vector Machine (SVM). The models were assessed in regard to accuracy, precision, recall, F1-score, and AUC-ROC (Area Under the Curve of the Receiver Operating Characteristic curve). Additionally, a multinomial logistic regression model using the KTS was developed as a benchmark for the ML models.

Results: All four ML models outperformed the KTS model, with the RF and GB both achieving AUC-ROC values of 0.91, compared to 0.62 (95% CI: 0.61-0.63) for the KTS (p < 0.01). The RF model demonstrated the highest accuracy at 0.69 (95% CI: 0.68-0.70), while the KTS-based model showed an accuracy of 0.54 (95% CI: 0.52-0.55). Sex, hours to hospital, and age were identified as the most significant predictors in both ML models.

Conclusion: ML models demonstrated superior predictive capabilities over the KTS in predicting triage decisions, even when utilising a limited set of injury information about the patients. These findings suggest a promising opportunity to advance trauma care in LMICs by integrating ML into triage decision-making. By leveraging basic demographic and clinical data, these models could provide a foundation for improved resource allocation and patient outcomes, addressing the unique challenges of resource-limited settings. However, further validation is essential to ensure their reliability and integration into clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Emergency Medicine
BMC Emergency Medicine Medicine-Emergency Medicine
CiteScore
3.50
自引率
8.00%
发文量
178
审稿时长
29 weeks
期刊介绍: BMC Emergency Medicine is an open access, peer-reviewed journal that considers articles on all urgent and emergency aspects of medicine, in both practice and basic research. In addition, the journal covers aspects of disaster medicine and medicine in special locations, such as conflict areas and military medicine, together with articles concerning healthcare services in the emergency departments.
期刊最新文献
Construction and evaluation of a triage assessment model for patients with acute non-traumatic chest pain: mixed retrospective and prospective observational study. Design and psychometric testing of a moral intelligence instrument for pre-hospital emergency medical services personnel: a sequential-exploratory mixed-method study. Empowerment of volunteer nursing service providers during disasters: A qualitative study. Enhancing trauma triage in low-resource settings using machine learning: a performance comparison with the Kampala Trauma Score. Incidence and outcomes of dysnatremia in crush injury patients admitted to Türkiye's largest hospital following the Kahramanmaraş earthquake.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1