Merrick Pierson Smela, Christian C Kramme, Patrick R J Fortuna, Bennett Wolf, Shrey Goel, Jessica Adams, Carl Ma, Sergiy Velychko, Ursula Widocki, Venkata Srikar Kavirayuni, Tianlai Chen, Sophia Vincoff, Edward Dong, Richie E Kohman, Mutsumi Kobayashi, Toshi Shioda, George M Church, Pranam Chatterjee
{"title":"Rapid human oogonia-like cell specification via transcription factor-directed differentiation.","authors":"Merrick Pierson Smela, Christian C Kramme, Patrick R J Fortuna, Bennett Wolf, Shrey Goel, Jessica Adams, Carl Ma, Sergiy Velychko, Ursula Widocki, Venkata Srikar Kavirayuni, Tianlai Chen, Sophia Vincoff, Edward Dong, Richie E Kohman, Mutsumi Kobayashi, Toshi Shioda, George M Church, Pranam Chatterjee","doi":"10.1038/s44319-025-00371-2","DOIUrl":null,"url":null,"abstract":"<p><p>The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs). We demonstrate that co-expression of five TFs - namely, ZNF281, LHX8, SOHLH1, ZGLP1, and ANHX, induces high efficiency DDX4-positive iOLCs in only four days in a feeder-free monolayer culture condition. We also show improved production of human primordial germ cell-like cells (hPGCLCs) from hiPSCs by expression of DLX5, HHEX, and FIGLA. We characterize these TF-based iOLCs and hPGCLCs via gene and protein expression analyses and demonstrate their similarity to in vivo and in vitro-derived oogonia and primordial germ cells. Together, these results identify new regulatory factors that enhance human germ cell specification in vitro, and further establish unique computational and experimental tools for human in vitro oogenesis research.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00371-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs). We demonstrate that co-expression of five TFs - namely, ZNF281, LHX8, SOHLH1, ZGLP1, and ANHX, induces high efficiency DDX4-positive iOLCs in only four days in a feeder-free monolayer culture condition. We also show improved production of human primordial germ cell-like cells (hPGCLCs) from hiPSCs by expression of DLX5, HHEX, and FIGLA. We characterize these TF-based iOLCs and hPGCLCs via gene and protein expression analyses and demonstrate their similarity to in vivo and in vitro-derived oogonia and primordial germ cells. Together, these results identify new regulatory factors that enhance human germ cell specification in vitro, and further establish unique computational and experimental tools for human in vitro oogenesis research.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.