AdipoR1 enhances the radiation resistance via ESR1/CCNB1IP1/cyclin B1 pathway in hepatocellular carcinoma cells.

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2025-01-23 DOI:10.1186/s10020-025-01065-0
Yuhan Gan, Linhui Zhu, Yimo Li, Ruoting Ge, Jiahe Tian, Yuxin Chen, Xiang He, Shumei Ma, Xiaodong Liu
{"title":"AdipoR1 enhances the radiation resistance via ESR1/CCNB1IP1/cyclin B1 pathway in hepatocellular carcinoma cells.","authors":"Yuhan Gan, Linhui Zhu, Yimo Li, Ruoting Ge, Jiahe Tian, Yuxin Chen, Xiang He, Shumei Ma, Xiaodong Liu","doi":"10.1186/s10020-025-01065-0","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma is one of the most common malignant tumors, and radiotherapy plays a pivotal role in its therapeutic regimen. However, radiotherapy resistance is the main cause of therapeutic failure in patients. Our previous study revealed that Adiponectin Receptor 1 (AdipoR1) is involved in regulating radiation resistance in liver cancer patients treated with stereotactic body radiotherapy. To explore the mechanism, we performed high-throughput transcriptome sequencing of hepatocellular carcinoma cells with stable knockdown of AdipoR1. KEGG enrichment analysis indicated that the cell cycle and ubiquitination degradation pathways may be involved in the regulation of radiation resistance by AdipoR1.The knockdown of AdipoR1 can attenuate the radiation-induced G2/M phase arrest through cyclin B1.By the ubiquitination IP assay and a rescue experiment, we confirmed that CCNB1IP1 regulated the ubiquitination and degradation of cyclin B1. Combined with information from transcription factor database and AdipoR1 transcriptome sequencing, these results showed that estrogen receptor 1 (ESR1) may be a transcription factor of CCNB1IP1. We found that AdipoR1 promoted the translocation of ESR1 from the cytoplasm to the nucleus, and ESR1 inhibited the transcription of CCNB1IP1.Therefore, we propose that AdipoR1 regulates the ubiquitination level, cell cycle progression, and radiation resistance of HCC cells through the \"AdipoR1 /ESR1/CCNB1IP1/cyclin B1\" axis. This study will promote the development of novel targeted radiosensitizing drugs.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"21"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01065-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma is one of the most common malignant tumors, and radiotherapy plays a pivotal role in its therapeutic regimen. However, radiotherapy resistance is the main cause of therapeutic failure in patients. Our previous study revealed that Adiponectin Receptor 1 (AdipoR1) is involved in regulating radiation resistance in liver cancer patients treated with stereotactic body radiotherapy. To explore the mechanism, we performed high-throughput transcriptome sequencing of hepatocellular carcinoma cells with stable knockdown of AdipoR1. KEGG enrichment analysis indicated that the cell cycle and ubiquitination degradation pathways may be involved in the regulation of radiation resistance by AdipoR1.The knockdown of AdipoR1 can attenuate the radiation-induced G2/M phase arrest through cyclin B1.By the ubiquitination IP assay and a rescue experiment, we confirmed that CCNB1IP1 regulated the ubiquitination and degradation of cyclin B1. Combined with information from transcription factor database and AdipoR1 transcriptome sequencing, these results showed that estrogen receptor 1 (ESR1) may be a transcription factor of CCNB1IP1. We found that AdipoR1 promoted the translocation of ESR1 from the cytoplasm to the nucleus, and ESR1 inhibited the transcription of CCNB1IP1.Therefore, we propose that AdipoR1 regulates the ubiquitination level, cell cycle progression, and radiation resistance of HCC cells through the "AdipoR1 /ESR1/CCNB1IP1/cyclin B1" axis. This study will promote the development of novel targeted radiosensitizing drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain. Nobiletin restores the intestinal barrier of HFD-induced obese mice by promoting MHC-II expression and lipid metabolism. Disrupting of IGF2BP3-stabilized CLDN11 mRNA by TNF-α increases intestinal permeability in obesity-related severe acute pancreatitis. AdipoR1 enhances the radiation resistance via ESR1/CCNB1IP1/cyclin B1 pathway in hepatocellular carcinoma cells. Chronic inflammation in post-acute sequelae of COVID-19 modulates gut microbiome: a review of literature on COVID-19 sequelae and gut dysbiosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1