Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries.

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Mrs Bulletin Pub Date : 2025-01-01 Epub Date: 2024-11-19 DOI:10.1557/s43577-024-00813-7
David M S Silva, Raquel Amaral, Nuno M Reis, Paulo R F Rocha
{"title":"Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries.","authors":"David M S Silva, Raquel Amaral, Nuno M Reis, Paulo R F Rocha","doi":"10.1557/s43577-024-00813-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle <i>in vitro</i>, due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible. Here, we precisely assessed growth of the HAB forming cyanobacteria <i>Oscillatoria nigroviridis</i>, by cultivating filament suspensions in transparent, gas permeable, and portable fluoropolymer microcapillary strips. Direct optical observation of <i>O. nigroviridis</i> growth revealed shorter filaments comprising less than 50 cells grew at a slower rate, <i>dN/dt</i> = 0.09 cell/day compared to filaments comprising more than 50 cells, with <i>dN/dt</i> up to 0.47 cell/day. The fourfold increase in <i>dN/dt</i> is suggested as part of the blooming strategy of the microorganism. This work suggests that fluoropolymer microcapillary strips can be used for effortless sampling and high-resolution monitoring of HABs.</p><p><strong>Impact statement: </strong>Climate change is increasing the occurrence of episodes of harmful algal bloom, where uncontrolled growth of noxious cyanobacteria such as <i>Oscillatoria</i> species has detrimental outcomes in both the environment and biomass production industry, consequently, impairing human and animal health due to the production of toxic or bioactive compounds. In particular, the study of growth dynamics of <i>Oscillatoria</i> species has been limited to unprecise methods due to complications with aliquoting filamentous biomass. Fluoropolymer microcapillary strips provide an ideal miniaturized platform for sampling, cultivation, and growth monitoring of <i>O. nigroviridis</i> strain UHCC 0327, which paves the way to foster better water quality management tools.</p><p><strong>Graphical abstract: </strong></p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1557/s43577-024-00813-7.</p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"50 1","pages":"44-51"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00813-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Filamentous cyanobacteria originate toxic harmful algal blooms (HABs) in aquatic ecosystems, severely impacting freshwater ecosystems and life. Despite being natural bloomers, these microorganisms are challenging to handle in vitro, due to the formation of aggregates with entangled filaments. Consequently, their precise growth dynamics, although vital to timely predict HABs, remains inaccessible. Here, we precisely assessed growth of the HAB forming cyanobacteria Oscillatoria nigroviridis, by cultivating filament suspensions in transparent, gas permeable, and portable fluoropolymer microcapillary strips. Direct optical observation of O. nigroviridis growth revealed shorter filaments comprising less than 50 cells grew at a slower rate, dN/dt = 0.09 cell/day compared to filaments comprising more than 50 cells, with dN/dt up to 0.47 cell/day. The fourfold increase in dN/dt is suggested as part of the blooming strategy of the microorganism. This work suggests that fluoropolymer microcapillary strips can be used for effortless sampling and high-resolution monitoring of HABs.

Impact statement: Climate change is increasing the occurrence of episodes of harmful algal bloom, where uncontrolled growth of noxious cyanobacteria such as Oscillatoria species has detrimental outcomes in both the environment and biomass production industry, consequently, impairing human and animal health due to the production of toxic or bioactive compounds. In particular, the study of growth dynamics of Oscillatoria species has been limited to unprecise methods due to complications with aliquoting filamentous biomass. Fluoropolymer microcapillary strips provide an ideal miniaturized platform for sampling, cultivation, and growth monitoring of O. nigroviridis strain UHCC 0327, which paves the way to foster better water quality management tools.

Graphical abstract:

Supplementary information: The online version contains supplementary material available at 10.1557/s43577-024-00813-7.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mrs Bulletin
Mrs Bulletin 工程技术-材料科学:综合
CiteScore
7.40
自引率
2.00%
发文量
193
审稿时长
4-8 weeks
期刊介绍: MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.
期刊最新文献
Filamentous cyanobacteria growth assessment using fluorinated ethylene propylene microcapillaries. The Changing Face of the Cornea in a Case of Juvenile Glaucoma and Subclinical Keratoconus. Bone-inspired dynamically adaptive materials: Current efforts and future opportunities Tensile testing in high-pressure gaseous hydrogen using the hollow specimen method Grain refinement and precipitation strengthening in austenitic steels through Cu addition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1