Sijun Du, Philippe Basset, Hengyu Guo, Dimitri Galayko, Armine Karami
{"title":"Power management technologies for triboelectric nanogenerators.","authors":"Sijun Du, Philippe Basset, Hengyu Guo, Dimitri Galayko, Armine Karami","doi":"10.1557/s43577-025-00860-8","DOIUrl":null,"url":null,"abstract":"<p><p>A triboelectric nanogenerator (TENG) is a novel device that utilizes contact electrification and electrostatic induction to convert mechanical energy into electrical energy. Its characteristics include high energy density and flexibility, enabling self-powering of electronic devices by harvesting mechanical energy from the environment. Its applications include biomedical devices, wearable electronics, and Internet-of-Things (IoT) sensors. Despite these advantages, extracting electrical energy from TENG remains challenging due to its time-varying nature and low internal capacitance. Effective power-management techniques are essential for TENG energy-harvesting systems, yet research on dedicated integrated power-conversion methods is currently limited. Given the growing interest in TENG, a comprehensive exploration of energy-harvesting systems is critically necessary. This article synthesizes and compares current advancements in triboelectric energy-harvesting systems, emphasizing strategies to enhance output power through various power-conversion techniques. Additionally, it explores techniques employed in other energy-harvesting systems to inspire innovative approaches in TENG system design.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":"50 3","pages":"305-314"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909022/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-025-00860-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A triboelectric nanogenerator (TENG) is a novel device that utilizes contact electrification and electrostatic induction to convert mechanical energy into electrical energy. Its characteristics include high energy density and flexibility, enabling self-powering of electronic devices by harvesting mechanical energy from the environment. Its applications include biomedical devices, wearable electronics, and Internet-of-Things (IoT) sensors. Despite these advantages, extracting electrical energy from TENG remains challenging due to its time-varying nature and low internal capacitance. Effective power-management techniques are essential for TENG energy-harvesting systems, yet research on dedicated integrated power-conversion methods is currently limited. Given the growing interest in TENG, a comprehensive exploration of energy-harvesting systems is critically necessary. This article synthesizes and compares current advancements in triboelectric energy-harvesting systems, emphasizing strategies to enhance output power through various power-conversion techniques. Additionally, it explores techniques employed in other energy-harvesting systems to inspire innovative approaches in TENG system design.
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.