Bianca Paola Santarosa , Larissa Miranda Padilha , Karen Nascimento da Silva , Luana Camargo , Cristina de Oliveira Massoco Salles Gomes , Viviani Gomes
{"title":"Waste milk consumption in dairy calves: Effects on innate immunity and inflammatory profile","authors":"Bianca Paola Santarosa , Larissa Miranda Padilha , Karen Nascimento da Silva , Luana Camargo , Cristina de Oliveira Massoco Salles Gomes , Viviani Gomes","doi":"10.1016/j.vetimm.2025.110885","DOIUrl":null,"url":null,"abstract":"<div><div>Waste milk (WM) is commonly used in calf feeding to reduce rearing costs; however, its effects on the innate immune response remain unexplored. Therefore, this study aimed to evaluate the effects of WM on the innate immune response and inflammatory profile of pre-weaned dairy calves. Thirty male Holstein calves were assigned to receive pasteurized waste milk (PWM), saleable milk (SM), and WM (n = 10 in each group). Blood samples were collected on D7, D21, D35, D49, and D63 (days of life) to assess the white blood cell (WBC) count, phagocytic activity of polymorphonuclear cells (PMN), and nitric oxide (NO) production by monocyte-derived macrophages, in addition to the measurement of oxidative stress biomarkers and haptoglobin concentration. A trend towards a higher occurrence of respiratory disease was detected in calves that received WM, followed by PWM. A group effect (P = 0.00) was observed in absolute monocyte values, with higher values found in the WM group. Only the TBARS concentration showed a group × time interaction among all oxidative stress biomarkers, with the highest mean found in calves receiving WM, followed by those receiving PWM and SM. Elevated TBARS concentrations indicated higher lipid peroxidation, which may have resulted from the accumulation of reactive oxygen species (ROS) due to immune challenges from ingesting pathogens present in WM. Haptoglobin concentration was unaffected. WM promoted lipid peroxidation and antioxidant enzyme activity, suggesting a pro-inflammatory effect. The time-effects of PMN phagocytosis reflected the development of the immune system in neonatal calves, which is consistent with previous studies.</div></div>","PeriodicalId":23511,"journal":{"name":"Veterinary immunology and immunopathology","volume":"280 ","pages":"Article 110885"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary immunology and immunopathology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165242725000054","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Waste milk (WM) is commonly used in calf feeding to reduce rearing costs; however, its effects on the innate immune response remain unexplored. Therefore, this study aimed to evaluate the effects of WM on the innate immune response and inflammatory profile of pre-weaned dairy calves. Thirty male Holstein calves were assigned to receive pasteurized waste milk (PWM), saleable milk (SM), and WM (n = 10 in each group). Blood samples were collected on D7, D21, D35, D49, and D63 (days of life) to assess the white blood cell (WBC) count, phagocytic activity of polymorphonuclear cells (PMN), and nitric oxide (NO) production by monocyte-derived macrophages, in addition to the measurement of oxidative stress biomarkers and haptoglobin concentration. A trend towards a higher occurrence of respiratory disease was detected in calves that received WM, followed by PWM. A group effect (P = 0.00) was observed in absolute monocyte values, with higher values found in the WM group. Only the TBARS concentration showed a group × time interaction among all oxidative stress biomarkers, with the highest mean found in calves receiving WM, followed by those receiving PWM and SM. Elevated TBARS concentrations indicated higher lipid peroxidation, which may have resulted from the accumulation of reactive oxygen species (ROS) due to immune challenges from ingesting pathogens present in WM. Haptoglobin concentration was unaffected. WM promoted lipid peroxidation and antioxidant enzyme activity, suggesting a pro-inflammatory effect. The time-effects of PMN phagocytosis reflected the development of the immune system in neonatal calves, which is consistent with previous studies.
期刊介绍:
The journal reports basic, comparative and clinical immunology as they pertain to the animal species designated here: livestock, poultry, and fish species that are major food animals and companion animals such as cats, dogs, horses and camels, and wildlife species that act as reservoirs for food, companion or human infectious diseases, or as models for human disease.
Rodent models of infectious diseases that are of importance in the animal species indicated above,when the disease requires a level of containment that is not readily available for larger animal experimentation (ABSL3), will be considered. Papers on rabbits, lizards, guinea pigs, badgers, armadillos, elephants, antelope, and buffalo will be reviewed if the research advances our fundamental understanding of immunology, or if they act as a reservoir of infectious disease for the primary animal species designated above, or for humans. Manuscripts employing other species will be reviewed if justified as fitting into the categories above.
The following topics are appropriate: biology of cells and mechanisms of the immune system, immunochemistry, immunodeficiencies, immunodiagnosis, immunogenetics, immunopathology, immunology of infectious disease and tumors, immunoprophylaxis including vaccine development and delivery, immunological aspects of pregnancy including passive immunity, autoimmuity, neuroimmunology, and transplanatation immunology. Manuscripts that describe new genes and development of tools such as monoclonal antibodies are also of interest when part of a larger biological study. Studies employing extracts or constituents (plant extracts, feed additives or microbiome) must be sufficiently defined to be reproduced in other laboratories and also provide evidence for possible mechanisms and not simply show an effect on the immune system.