{"title":"pH- and glucose-responsive antioxidant hydrogel promotes diabetic wound healing","authors":"Yanjun Zhang , Ling Zhang , Pingli Wu , Shuang Wu , Jianghui Qin , Haisong Zhang , Guoming Sun","doi":"10.1016/j.bioadv.2025.214177","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive oxidative stress and persistent inflammation are key factors contributing to the formation of diabetic chronic wounds. Delivering antioxidants through a microenvironment-responsive hydrogel system can effectively enhance wound healing and tissue regeneration. In this study, we developed a novel pH- and glucose-responsive hydrogel using Schiff base reaction and phenyl borate group for intelligent antioxidant release. Hyaluronic acid (HA) modified with phenylboronic acid (PBA) (HA-PBA) was oxidized to form OHA-PBA, which was then crosslinked with carboxymethyl chitosan (CMCS) and incorporated Proanthocyanidins (PA) to create an OHA-PBA/CMCS/PA (OPCP) hydrogel. The reversible nature of imine and borate groups enabled the responsive release of PA from OPCP hydrogels under acidic and high glucose conditions. The OPCP hydrogel exhibited excellent biocompatibility, suitable mechanical properties, and biodegradability. Both <em>in vitro</em> and <em>in vivo</em> results demonstrated that the OPCP hydrogel effectively reduced reactive oxygen species (ROS), suppressed inflammation, promoted vascularization, accelerated collagen deposition, and facilitated diabetic wound healing. This strategy offers novel insights into microenvironment-responsive scaffolds, highlighting the potential application of this responsive antioxidant hydrogel scaffold for chronic diabetic wound treatment.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214177"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive oxidative stress and persistent inflammation are key factors contributing to the formation of diabetic chronic wounds. Delivering antioxidants through a microenvironment-responsive hydrogel system can effectively enhance wound healing and tissue regeneration. In this study, we developed a novel pH- and glucose-responsive hydrogel using Schiff base reaction and phenyl borate group for intelligent antioxidant release. Hyaluronic acid (HA) modified with phenylboronic acid (PBA) (HA-PBA) was oxidized to form OHA-PBA, which was then crosslinked with carboxymethyl chitosan (CMCS) and incorporated Proanthocyanidins (PA) to create an OHA-PBA/CMCS/PA (OPCP) hydrogel. The reversible nature of imine and borate groups enabled the responsive release of PA from OPCP hydrogels under acidic and high glucose conditions. The OPCP hydrogel exhibited excellent biocompatibility, suitable mechanical properties, and biodegradability. Both in vitro and in vivo results demonstrated that the OPCP hydrogel effectively reduced reactive oxygen species (ROS), suppressed inflammation, promoted vascularization, accelerated collagen deposition, and facilitated diabetic wound healing. This strategy offers novel insights into microenvironment-responsive scaffolds, highlighting the potential application of this responsive antioxidant hydrogel scaffold for chronic diabetic wound treatment.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!