Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences PLoS Biology Pub Date : 2025-01-23 eCollection Date: 2025-01-01 DOI:10.1371/journal.pbio.3002978
Nadja R Ging-Jehli, James F Cavanagh, Minkyu Ahn, David J Segar, Wael F Asaad, Michael J Frank
{"title":"Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty.","authors":"Nadja R Ging-Jehli, James F Cavanagh, Minkyu Ahn, David J Segar, Wael F Asaad, Michael J Frank","doi":"10.1371/journal.pbio.3002978","DOIUrl":null,"url":null,"abstract":"<p><p>The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic \"decision boundary\") may be necessary to meet these competing demands. Through the application of novel computational modeling tools in tandem with direct neural recordings from human BG areas, we find that neural dynamics in the theta band manifest as variations in a collapsing decision boundary as a function of conflict and uncertainty. We collected intracranial recordings from patients diagnosed with either Parkinson's disease (PD) (n = 14) or dystonia (n = 3) in the subthalamic nucleus (STN), globus pallidus internus (GPi), and globus pallidus externus (GPe) during their performance of a novel perceptual discrimination task in which we independently manipulated uncertainty and conflict. To formally characterize whether these task and neural components influenced decision dynamics, we leveraged modified diffusion decision models (DDMs). Behavioral choices and response time distributions were best characterized by a modified DDM in which the decision boundary collapsed over time, but where the onset and shape of this collapse varied with conflict. Moreover, theta dynamics in BG structures modulated the onset and shape of this collapse but differentially across task conditions. In STN, theta activity was related to a prolonged decision boundary (indexed by slower collapse and therefore more deliberate choices) during high conflict situations. Conversely, rapid declines in GPe theta during low conflict conditions were related to rapidly collapsing boundaries and expedited choices, with additional complementary decision bound adjustments during high uncertainty situations. Finally, GPi theta effects were uniform across conditions, with increases in theta associated with a prolongation of decision bound collapses. Together, these findings provide a nuanced understanding of how our brain thwarts impulsive actions while nonetheless enabling behavioral adaptation amidst noisy and conflicting information.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002978"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002978","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The basal ganglia (BG) play a key role in decision-making, preventing impulsive actions in some contexts while facilitating fast adaptations in others. The specific contributions of different BG structures to this nuanced behavior remain unclear, particularly under varying situations of noisy and conflicting information that necessitate ongoing adjustments in the balance between speed and accuracy. Theoretical accounts suggest that dynamic regulation of the amount of evidence required to commit to a decision (a dynamic "decision boundary") may be necessary to meet these competing demands. Through the application of novel computational modeling tools in tandem with direct neural recordings from human BG areas, we find that neural dynamics in the theta band manifest as variations in a collapsing decision boundary as a function of conflict and uncertainty. We collected intracranial recordings from patients diagnosed with either Parkinson's disease (PD) (n = 14) or dystonia (n = 3) in the subthalamic nucleus (STN), globus pallidus internus (GPi), and globus pallidus externus (GPe) during their performance of a novel perceptual discrimination task in which we independently manipulated uncertainty and conflict. To formally characterize whether these task and neural components influenced decision dynamics, we leveraged modified diffusion decision models (DDMs). Behavioral choices and response time distributions were best characterized by a modified DDM in which the decision boundary collapsed over time, but where the onset and shape of this collapse varied with conflict. Moreover, theta dynamics in BG structures modulated the onset and shape of this collapse but differentially across task conditions. In STN, theta activity was related to a prolonged decision boundary (indexed by slower collapse and therefore more deliberate choices) during high conflict situations. Conversely, rapid declines in GPe theta during low conflict conditions were related to rapidly collapsing boundaries and expedited choices, with additional complementary decision bound adjustments during high uncertainty situations. Finally, GPi theta effects were uniform across conditions, with increases in theta associated with a prolongation of decision bound collapses. Together, these findings provide a nuanced understanding of how our brain thwarts impulsive actions while nonetheless enabling behavioral adaptation amidst noisy and conflicting information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
期刊最新文献
ParSite is a multicolor DNA labeling system that allows for simultaneous imaging of triple genomic loci in living cells. Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice. Ventral hippocampus to nucleus accumbens shell circuit regulates approach decisions during motivational conflict. Basal ganglia components have distinct computational roles in decision-making dynamics under conflict and uncertainty. Cost-benefit tradeoff mediates the transition from rule-based to memory-based processing during practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1