MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network.

Yujian Lee, Peng Gao, Yongqi Xu, Ziyang Wang, Shuaicheng Li, Jiaxing Chen
{"title":"MEGA-GO: functions prediction of diverse protein sequence length using Multi-scalE Graph Adaptive neural network.","authors":"Yujian Lee, Peng Gao, Yongqi Xu, Ziyang Wang, Shuaicheng Li, Jiaxing Chen","doi":"10.1093/bioinformatics/btaf032","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs. Furthermore, existing models have limitations in effectively predicting the function of newly sequenced proteins that are not included in protein interaction networks. This highlights the need for novel approaches integrating protein structure and sequence data.</p><p><strong>Results: </strong>We introduce Multi-scalE Graph Adaptive neural network (MEGA-GO), highlighting the capability of capturing diverse protein sequence length features from multiple scales. The unique graph adaptive neural network architecture of MEGA-GO enables a more nuanced extraction of graph structure features, effectively capturing intricate relationships within biological data. Experimental results demonstrate that MEGA-GO outperforms mainstream protein function prediction models in the accuracy of Gene Ontology term classification, yielding 33.4%, 68.9%, and 44.6% of area under the precision-recall curve on biological process, molecular function, and cellular component domains, respectively. The rest of the experimental results reveal that our model consistently surpasses the state-of-the-art methods.</p><p><strong>Availability and implementation: </strong>The source code and data of MEGA-GO are available at https://github.com/Cheliosoops/MEGA-GO.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs. Furthermore, existing models have limitations in effectively predicting the function of newly sequenced proteins that are not included in protein interaction networks. This highlights the need for novel approaches integrating protein structure and sequence data.

Results: We introduce Multi-scalE Graph Adaptive neural network (MEGA-GO), highlighting the capability of capturing diverse protein sequence length features from multiple scales. The unique graph adaptive neural network architecture of MEGA-GO enables a more nuanced extraction of graph structure features, effectively capturing intricate relationships within biological data. Experimental results demonstrate that MEGA-GO outperforms mainstream protein function prediction models in the accuracy of Gene Ontology term classification, yielding 33.4%, 68.9%, and 44.6% of area under the precision-recall curve on biological process, molecular function, and cellular component domains, respectively. The rest of the experimental results reveal that our model consistently surpasses the state-of-the-art methods.

Availability and implementation: The source code and data of MEGA-GO are available at https://github.com/Cheliosoops/MEGA-GO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1