Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics.

Wei Qin, Shao Xu, Jiatian Wei, Fuxi Li, Chuanxia Zhang, Huantian Zhang, Yuanxian Liu
{"title":"Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics.","authors":"Wei Qin, Shao Xu, Jiatian Wei, Fuxi Li, Chuanxia Zhang, Huantian Zhang, Yuanxian Liu","doi":"10.1016/j.compbiolchem.2025.108356","DOIUrl":null,"url":null,"abstract":"<p><p>The pathophysiological distinctions between osteoarthritis (OA) and diabetic osteoarthritis (DOA) are critical yet not well delineated. In this study, we employed single-cell RNA sequencing to clarify the unique cellular and molecular mechanisms underpinning the progression of both conditions. We identified a novel subpopulation of chondrocytes in DOA, termed 'Heat Shock' chondrocytes, marked by the expression of distinct molecular markers including HSPA1A, HSPA1B, HSPB1, and HSPA8. Our comprehensive gene expression analysis revealed a pronounced upregulation of inflammatory pathways associated with oxidative stress-namely the MAPK, NF-κB, and PI3K signaling pathways-in the effector and proliferating chondrocyte subpopulations, with a predominance in DOA. Further, our investigation into cell-cell communication demonstrated a significant diminution of intercellular signaling in DOA compared to OA. These insights not only elucidate distinct cellular heterogeneities and potential pathogenic mechanisms differentiating OA from DOA but also enhance our understanding of their molecular pathophysiology, offering novel avenues for targeted therapeutic strategies.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108356"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2025.108356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pathophysiological distinctions between osteoarthritis (OA) and diabetic osteoarthritis (DOA) are critical yet not well delineated. In this study, we employed single-cell RNA sequencing to clarify the unique cellular and molecular mechanisms underpinning the progression of both conditions. We identified a novel subpopulation of chondrocytes in DOA, termed 'Heat Shock' chondrocytes, marked by the expression of distinct molecular markers including HSPA1A, HSPA1B, HSPB1, and HSPA8. Our comprehensive gene expression analysis revealed a pronounced upregulation of inflammatory pathways associated with oxidative stress-namely the MAPK, NF-κB, and PI3K signaling pathways-in the effector and proliferating chondrocyte subpopulations, with a predominance in DOA. Further, our investigation into cell-cell communication demonstrated a significant diminution of intercellular signaling in DOA compared to OA. These insights not only elucidate distinct cellular heterogeneities and potential pathogenic mechanisms differentiating OA from DOA but also enhance our understanding of their molecular pathophysiology, offering novel avenues for targeted therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning and molecular subtyping reveal the impact of diverse patterns of cell death on the prognosis and treatment of hepatocellular carcinoma. In silico analysis of novel Triacontafluoropentadec-1-ene as a sustainable replacement for dodecane in fisheries microplastics: Molecular docking, dynamics simulation and pharmacophore studies of acetylcholinesterase activity. Relationship between structural properties and biological activity of (-)-menthol and some menthyl esters. Deciphering chondrocyte diversity in diabetic osteoarthritis through single-cell transcriptomics. Predicting distant metastatic sites of cancer using perturbed correlations of miRNAs with competing endogenous RNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1