Neural Density Functional Theory of Liquid-Gas Phase Coexistence

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2025-01-24 DOI:10.1103/physrevx.15.011013
Florian Sammüller, Matthias Schmidt, Robert Evans
{"title":"Neural Density Functional Theory of Liquid-Gas Phase Coexistence","authors":"Florian Sammüller, Matthias Schmidt, Robert Evans","doi":"10.1103/physrevx.15.011013","DOIUrl":null,"url":null,"abstract":"We use supervised machine learning together with the concepts of classical density functional theory to investigate the effects of interparticle attraction on the pair structure, thermodynamics, bulk liquid-gas coexistence, and associated interfacial phenomena in many-body systems. Local learning of the one-body direct correlation functional is based on Monte Carlo simulations of inhomogeneous systems with randomized thermodynamic conditions, randomized planar shapes of the external potential, and randomized box sizes. Focusing on the prototypical Lennard-Jones system, we test predictions of the resulting neural attractive density functional across a broad spectrum of physical behavior associated with liquid-gas phase coexistence in bulk and at interfaces. We analyze the bulk radial distribution function g</a:mi>(</a:mo>r</a:mi>)</a:mo></a:math> obtained from automatic differentiation and the Ornstein-Zernike route and determine (i) the Fisher-Widom line, i.e., the crossover of the asymptotic (large distance) decay of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>g</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mi>r</e:mi><e:mo stretchy=\"false\">)</e:mo></e:math> from monotonic to oscillatory, (ii) the (Widom) line of maximal correlation length, (iii) the line of maximal isothermal compressibility, and (iv) the spinodal by calculating the poles of the structure factor in the complex plane. The bulk binodal and the density profile of the free liquid-gas interface are obtained from density functional minimization and the corresponding surface tension from functional line integration. We also show that the neural functional describes accurately the phenomena of drying at a hard wall and of capillary evaporation for a liquid confined in a slit pore. Our neural framework yields results that improve significantly upon standard mean-field treatments of interparticle attraction. Comparison with independent simulation results demonstrates a consistent picture of phase separation even when restricting the training to supercritical states only. We argue that phase coexistence and its associated signatures can be discovered as emerging phenomena via functional mappings and educated extrapolation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"3 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011013","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We use supervised machine learning together with the concepts of classical density functional theory to investigate the effects of interparticle attraction on the pair structure, thermodynamics, bulk liquid-gas coexistence, and associated interfacial phenomena in many-body systems. Local learning of the one-body direct correlation functional is based on Monte Carlo simulations of inhomogeneous systems with randomized thermodynamic conditions, randomized planar shapes of the external potential, and randomized box sizes. Focusing on the prototypical Lennard-Jones system, we test predictions of the resulting neural attractive density functional across a broad spectrum of physical behavior associated with liquid-gas phase coexistence in bulk and at interfaces. We analyze the bulk radial distribution function g(r) obtained from automatic differentiation and the Ornstein-Zernike route and determine (i) the Fisher-Widom line, i.e., the crossover of the asymptotic (large distance) decay of g(r) from monotonic to oscillatory, (ii) the (Widom) line of maximal correlation length, (iii) the line of maximal isothermal compressibility, and (iv) the spinodal by calculating the poles of the structure factor in the complex plane. The bulk binodal and the density profile of the free liquid-gas interface are obtained from density functional minimization and the corresponding surface tension from functional line integration. We also show that the neural functional describes accurately the phenomena of drying at a hard wall and of capillary evaporation for a liquid confined in a slit pore. Our neural framework yields results that improve significantly upon standard mean-field treatments of interparticle attraction. Comparison with independent simulation results demonstrates a consistent picture of phase separation even when restricting the training to supercritical states only. We argue that phase coexistence and its associated signatures can be discovered as emerging phenomena via functional mappings and educated extrapolation. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Neural Density Functional Theory of Liquid-Gas Phase Coexistence Time-Resolved X-Ray Spectroscopy from the Atomic Orbital Ground State Up Dissipative Protection of a GKP Qubit in a High-Impedance Superconducting Circuit Driven by a Microwave Frequency Comb Nonreciprocal Synchronization of Active Quantum Spins Spectroscopy and Modeling of Yb171 Rydberg States for High-Fidelity Two-Qubit Gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1