Distinct seasonal and annual variability of prokaryotes, fungi and protists in cropland soil under different tillage systems and soil texture

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-01-25 DOI:10.1016/j.soilbio.2025.109732
Haotian Wang, Jingjing Yang, Damien R. Finn, Joachim Brunotte, Christoph C. Tebbe
{"title":"Distinct seasonal and annual variability of prokaryotes, fungi and protists in cropland soil under different tillage systems and soil texture","authors":"Haotian Wang, Jingjing Yang, Damien R. Finn, Joachim Brunotte, Christoph C. Tebbe","doi":"10.1016/j.soilbio.2025.109732","DOIUrl":null,"url":null,"abstract":"A sustainable use of croplands should utilize beneficial services provided by their resident soil microbiome. To identify potentially adverse environmental effects on soil microbiomes in the future, a better understanding of their natural variability is fundamental. Here, we characterized the abundance and diversity of soil microbial communities over two years at two-weeks intervals on three neighboring fields at an operational farm in Northern Germany. Field soils differed in texture (clay, loam) and tillage (soil conservation vs. conventional). PCR-amplicon analyses of soil DNA revealed distinct temporal variations of bacteria, archaea, fungi, and protists (Cercozoa and Endomyxa). Annual differences and seasonal effects on all microbial groups were detected. In addition to soil pH, prokaryotic communities varied with total soil C and N, but fungi with temperature and precipitation. The C/N-ratio had contrasting effects on prokaryotic phyla and protistan classes, but all fungal phyla responded positively. Irrespective of the sampling date, prokaryotic and fungal but not protistan community compositions from the three soils were distinct. Compositional turn-over rates were higher for fungi and protists than for prokaryotes and, for all, lower in clay. Conventional tillage had the strongest effect on protist diversity. In co-occurrence networks, most nodes were provided by prokaryotes, but highly connected nodes by predatory protists in the first, and by saprotrophic fungi in the second year. The temporal variation established here can provide insights of what is natural and thus below the limits of concern in detecting adverse effects on the soil microbiome.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"113 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109732","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A sustainable use of croplands should utilize beneficial services provided by their resident soil microbiome. To identify potentially adverse environmental effects on soil microbiomes in the future, a better understanding of their natural variability is fundamental. Here, we characterized the abundance and diversity of soil microbial communities over two years at two-weeks intervals on three neighboring fields at an operational farm in Northern Germany. Field soils differed in texture (clay, loam) and tillage (soil conservation vs. conventional). PCR-amplicon analyses of soil DNA revealed distinct temporal variations of bacteria, archaea, fungi, and protists (Cercozoa and Endomyxa). Annual differences and seasonal effects on all microbial groups were detected. In addition to soil pH, prokaryotic communities varied with total soil C and N, but fungi with temperature and precipitation. The C/N-ratio had contrasting effects on prokaryotic phyla and protistan classes, but all fungal phyla responded positively. Irrespective of the sampling date, prokaryotic and fungal but not protistan community compositions from the three soils were distinct. Compositional turn-over rates were higher for fungi and protists than for prokaryotes and, for all, lower in clay. Conventional tillage had the strongest effect on protist diversity. In co-occurrence networks, most nodes were provided by prokaryotes, but highly connected nodes by predatory protists in the first, and by saprotrophic fungi in the second year. The temporal variation established here can provide insights of what is natural and thus below the limits of concern in detecting adverse effects on the soil microbiome.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Distinct seasonal and annual variability of prokaryotes, fungi and protists in cropland soil under different tillage systems and soil texture Root exudates from drought-affected plants increase soil respiration across a range of grassland species A legume-grass cover crop builds mineral-associated organic matter across variable agricultural soils Stability of iron-carbon complexes determines carbon sequestration efficiency in iron-rich soils Rotational diversity shapes the bacterial and archaeal communities and confers positive plant-soil feedback in winter wheat rotations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1