Aya Osama, Ali Mostafa Anwar, Shahd Ezzeldin, Eman Ali Ahmed, Sebaey Mahgoub, Omneya Ibrahim, Sherif Abdelaziz Ibrahim, Ismail Abdelshafy Abdelhamid, Usama Bakry, Aya A. Diab, Ahmed A.Sayed, Sameh Magdeldin
{"title":"Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions","authors":"Aya Osama, Ali Mostafa Anwar, Shahd Ezzeldin, Eman Ali Ahmed, Sebaey Mahgoub, Omneya Ibrahim, Sherif Abdelaziz Ibrahim, Ismail Abdelshafy Abdelhamid, Usama Bakry, Aya A. Diab, Ahmed A.Sayed, Sameh Magdeldin","doi":"10.1016/j.jare.2025.01.036","DOIUrl":null,"url":null,"abstract":"<h3>Introduction</h3>Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.<h3>Objectives</h3>This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.<h3>Methods</h3>The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed. Microbial diversity was assessed using 16S rRNA V3 and V4 sequencing. A novel metaproteomics pipeline identified bacterial proteins, while untargeted metabolomics explored altered metabolic pathways. Finally, multi-omics integration was employed to connect macromolecular changes to neurodevelopmental deficits.<h3>Results</h3>Children with ASD exhibited significant alterations in gut microbiota, including lower diversity and richness compared to controls. <em>Tyzzerella</em> was uniquely associated with the ASD group. Microbial network analysis revealed rewiring and reduced stability in ASD. Major metaproteins identified were produced by <em>Bifidobacterium</em> and <em>Klebsiella</em> (e.g., xylose isomerase and NADH peroxidase). Metabolomics profiling identified neurotransmitters (e.g., glutamate, DOPAC), lipids, and amino acids capable of crossing the blood–brain barrier, potentially contributing to neurodevelopmental and immune dysregulation. Host proteome analysis revealed altered proteins, including kallikrein (KLK1) and transthyretin (TTR), involved in neuroinflammation and immune regulation. Finally, multi-omics integration supported single-omics findings and reinforced the hypothesis that gut microbiota and their macromolecular products may contribute to ASD-associated symptoms.<h3>Conclusions</h3>The integration of multi-omics data provided critical evidence that alteration in gut microbiota and associated macromolecule production may play a role in ASD-related symptoms and co-morbidities. Key bacterial metaproteins and metabolites were identified as potential contributors to neurological and immune dysregulation in ASD, underscoring possible novel targets for therapeutic intervention.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":"113 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2025.01.036","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives
This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods
The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed. Microbial diversity was assessed using 16S rRNA V3 and V4 sequencing. A novel metaproteomics pipeline identified bacterial proteins, while untargeted metabolomics explored altered metabolic pathways. Finally, multi-omics integration was employed to connect macromolecular changes to neurodevelopmental deficits.
Results
Children with ASD exhibited significant alterations in gut microbiota, including lower diversity and richness compared to controls. Tyzzerella was uniquely associated with the ASD group. Microbial network analysis revealed rewiring and reduced stability in ASD. Major metaproteins identified were produced by Bifidobacterium and Klebsiella (e.g., xylose isomerase and NADH peroxidase). Metabolomics profiling identified neurotransmitters (e.g., glutamate, DOPAC), lipids, and amino acids capable of crossing the blood–brain barrier, potentially contributing to neurodevelopmental and immune dysregulation. Host proteome analysis revealed altered proteins, including kallikrein (KLK1) and transthyretin (TTR), involved in neuroinflammation and immune regulation. Finally, multi-omics integration supported single-omics findings and reinforced the hypothesis that gut microbiota and their macromolecular products may contribute to ASD-associated symptoms.
Conclusions
The integration of multi-omics data provided critical evidence that alteration in gut microbiota and associated macromolecule production may play a role in ASD-related symptoms and co-morbidities. Key bacterial metaproteins and metabolites were identified as potential contributors to neurological and immune dysregulation in ASD, underscoring possible novel targets for therapeutic intervention.
期刊介绍:
Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences.
The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.