Zhan-Zhan Wang, Qi Zheng, Mei-Jie Yu, Mao-Sheng Cao
{"title":"Multidimensional micro-nano heterostructures composed of nanofibers and micro dodecahedrons for electromagnetic wave attenuation and energy conversion","authors":"Zhan-Zhan Wang, Qi Zheng, Mei-Jie Yu, Mao-Sheng Cao","doi":"10.1016/j.jmst.2025.01.002","DOIUrl":null,"url":null,"abstract":"As electromagnetic (EM) pollution intensifies, EM protection materials have garnered significant attention. However, the development of lightweight and efficient EM protection materials still faces numerous challenges. In this work, a bilayered metal-organic framework (MOF), specifically zeolitic imidazolate framework-8@zeolitic imidazolate framework-67 (ZIF-8@ZIF-67), is initially prepared. Subsequently, through a combination of electrospinning and high-temperature carbonization processes, a heterodimensional structure featuring carbon-based dodecahedrons tandemly arranged on carbon nanofibers was obtained. The carbonization at various temperatures modulated the nanofibers’ conductive network and graphitization of dodecahedrons, thereby regulating the dielectric response, which is crucial for tuning the EM properties of the material. Furthermore, dielectric-magnetic synergy also plays a certain role in optimizing microwave absorption performance. The Co-CHD@CNF800 with 60 wt% loading content demonstrates a minimum reflection loss (RL) of −53.6 dB at 1.83 mm, while 40 wt% loading content exhibits a maximum effective absorption bandwidth (EAB) of 6 GHz at 2.67 mm. Additionally, Co-CHD@CNF1000 with 80 wt% exhibits remarkable electromagnetic interference (EMI) shielding performance. Importantly, an EM energy conversion device has been constructed that can effectively recover and utilize harmful EM energy. This research presents an innovative approach to the development of lightweight and efficient EM protection materials and devices.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"14 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.01.002","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As electromagnetic (EM) pollution intensifies, EM protection materials have garnered significant attention. However, the development of lightweight and efficient EM protection materials still faces numerous challenges. In this work, a bilayered metal-organic framework (MOF), specifically zeolitic imidazolate framework-8@zeolitic imidazolate framework-67 (ZIF-8@ZIF-67), is initially prepared. Subsequently, through a combination of electrospinning and high-temperature carbonization processes, a heterodimensional structure featuring carbon-based dodecahedrons tandemly arranged on carbon nanofibers was obtained. The carbonization at various temperatures modulated the nanofibers’ conductive network and graphitization of dodecahedrons, thereby regulating the dielectric response, which is crucial for tuning the EM properties of the material. Furthermore, dielectric-magnetic synergy also plays a certain role in optimizing microwave absorption performance. The Co-CHD@CNF800 with 60 wt% loading content demonstrates a minimum reflection loss (RL) of −53.6 dB at 1.83 mm, while 40 wt% loading content exhibits a maximum effective absorption bandwidth (EAB) of 6 GHz at 2.67 mm. Additionally, Co-CHD@CNF1000 with 80 wt% exhibits remarkable electromagnetic interference (EMI) shielding performance. Importantly, an EM energy conversion device has been constructed that can effectively recover and utilize harmful EM energy. This research presents an innovative approach to the development of lightweight and efficient EM protection materials and devices.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.