{"title":"Conformal collider physics meets LHC data","authors":"Kyle Lee, Bianka Meçaj, Ian Moult","doi":"10.1103/physrevd.111.l011502","DOIUrl":null,"url":null,"abstract":"The remarkably high energies of the Large Hadron Collider (LHC) have allowed for the first measurements of the shapes and scalings of multipoint correlators of energy flow operators, ⟨</a:mo>Ψ</a:mi>|</a:mo>E</a:mi>(</a:mo>n</a:mi>→</a:mo></a:mover>1</a:mn></a:msub>)</a:mo>E</a:mi>(</a:mo>n</a:mi>→</a:mo></a:mover>2</a:mn></a:msub>)</a:mo>⋯</a:mo>E</a:mi>(</a:mo>n</a:mi>→</a:mo></a:mover>k</a:mi></a:msub>)</a:mo>|</a:mo>Ψ</a:mi>⟩</a:mo></a:math>, providing new insights into the Lorentzian dynamics of quantum chromodynamics (QCD). In this letter, we use recent advances in effective field theory to derive a rigorous factorization theorem for the light-ray density matrix, <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mi>ρ</x:mi><x:mo>=</x:mo><x:mo stretchy=\"false\">|</x:mo><x:mi mathvariant=\"normal\">Ψ</x:mi><x:mo stretchy=\"false\">⟩</x:mo><x:mo stretchy=\"false\">⟨</x:mo><x:mi mathvariant=\"normal\">Ψ</x:mi><x:mo stretchy=\"false\">|</x:mo></x:math>, inside high transverse momentum jets at the LHC. Using the light-ray operator product expansion, the scaling behavior of multipoint correlators can be computed from the expectation value of the twist-2 spin-<fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mi>J</fb:mi></fb:math> light-ray operators, <hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hb:msup><hb:mi mathvariant=\"double-struck\">O</hb:mi><hb:mrow><hb:mo stretchy=\"false\">[</hb:mo><hb:mi>J</hb:mi><hb:mo stretchy=\"false\">]</hb:mo></hb:mrow></hb:msup></hb:math>, in this state, <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mi>Tr</mb:mi><mb:mo stretchy=\"false\">[</mb:mo><mb:mi>ρ</mb:mi><mb:msup><mb:mi mathvariant=\"double-struck\">O</mb:mi><mb:mrow><mb:mo stretchy=\"false\">[</mb:mo><mb:mi>J</mb:mi><mb:mo stretchy=\"false\">]</mb:mo></mb:mrow></mb:msup><mb:mo stretchy=\"false\">]</mb:mo></mb:math>. We compute the light-ray density matrix at next-to-leading order, and combine this with results for the next-to-leading logarithmic scaling behavior of the correlators up to six-points, comparing with CMS open data. This theoretical accuracy allows us to resolve the quantum scaling dimensions of QCD light-ray operators inside jets at the LHC. Our factorization theorem for the light-ray density matrix at the LHC completes the link between recent developments in the study of energy correlators and LHC phenomenology, opening the door to a wide variety of precision jet substructure studies. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"2 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l011502","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The remarkably high energies of the Large Hadron Collider (LHC) have allowed for the first measurements of the shapes and scalings of multipoint correlators of energy flow operators, ⟨Ψ|E(n→1)E(n→2)⋯E(n→k)|Ψ⟩, providing new insights into the Lorentzian dynamics of quantum chromodynamics (QCD). In this letter, we use recent advances in effective field theory to derive a rigorous factorization theorem for the light-ray density matrix, ρ=|Ψ⟩⟨Ψ|, inside high transverse momentum jets at the LHC. Using the light-ray operator product expansion, the scaling behavior of multipoint correlators can be computed from the expectation value of the twist-2 spin-J light-ray operators, O[J], in this state, Tr[ρO[J]]. We compute the light-ray density matrix at next-to-leading order, and combine this with results for the next-to-leading logarithmic scaling behavior of the correlators up to six-points, comparing with CMS open data. This theoretical accuracy allows us to resolve the quantum scaling dimensions of QCD light-ray operators inside jets at the LHC. Our factorization theorem for the light-ray density matrix at the LHC completes the link between recent developments in the study of energy correlators and LHC phenomenology, opening the door to a wide variety of precision jet substructure studies. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.