Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling

Rui Liu, Upendra M. Sainju, Rajan Ghimire, Hongyan Cheng, Fangyuan Guan, Yang Liu, Caidi Yang, Fazhu Zhao, Jun Wang
{"title":"Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling","authors":"Rui Liu, Upendra M. Sainju, Rajan Ghimire, Hongyan Cheng, Fangyuan Guan, Yang Liu, Caidi Yang, Fazhu Zhao, Jun Wang","doi":"10.1016/j.still.2025.106462","DOIUrl":null,"url":null,"abstract":"Cover cropping is an effective agricultural management strategy for enhancing soil organic carbon (SOC) sequestration and mitigating climate change. However, the contribution of different cover crop species to individual carbon (C) fractions in soil remains unclear. An <ce:italic>in-situ</ce:italic> decomposition experiment using <ce:sup loc=\"post\">13</ce:sup>C-labeled residues of soybean (SB) or sudangrass (SG), along with a control with no residue (CK), was designed to explore the dynamics of residue decomposition, distribution of cover crop-derived C into aggregate-protected and -unprotected C, and the sequestration mechanisms of these fractions. The aggregate-protected C included intra-aggregate particulate organic C (iPOC) and mineral-associated organic C (MAOC), and aggregate-unprotected C included coarse particulate organic C (cPOC) and free fine particulate organic C (fPOC). The amount and rate of cover crop residue C mineralization were greater in SB than in SG across all wheat-growing stages. The SB increased large macroaggregate (&gt;2 mm) compared to SG during the early wheat growth stages. The aggregate-protected C fractions were greater in SB and SG than CK at the pre-sowing, tillering, and heading stages. The <ce:sup loc=\"post\">13</ce:sup>C labeling indicated that C sequestration occurred primarily as aggregate-protected C, predominantly as MAOC. The recovery efficiencies of cover crop-derived C into soil C fractions fell below 0 % at green-up and jointing stages. At maturity stage, the cumulative C recovery rate of cover crop-derived C into SOC was greater in SB (16.3 %) than in SG (8.76 %). Correlation analysis indicated that cover cropping promoted SOC sequestration primarily and directly by increasing the aggregate-protected C. Structural equation model analysis suggested that SG sequestered C into soils primarily by increasing cPOC and iPOC, In contrast, SB sequestered C by increasing cPOC, iPOC, and MAOC. This study elucidates the dynamic effects of cover cropping on soil C during wheat growth and the distinct C sequestration mechanisms in legume and non-legume systems.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2025.106462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cover cropping is an effective agricultural management strategy for enhancing soil organic carbon (SOC) sequestration and mitigating climate change. However, the contribution of different cover crop species to individual carbon (C) fractions in soil remains unclear. An in-situ decomposition experiment using 13C-labeled residues of soybean (SB) or sudangrass (SG), along with a control with no residue (CK), was designed to explore the dynamics of residue decomposition, distribution of cover crop-derived C into aggregate-protected and -unprotected C, and the sequestration mechanisms of these fractions. The aggregate-protected C included intra-aggregate particulate organic C (iPOC) and mineral-associated organic C (MAOC), and aggregate-unprotected C included coarse particulate organic C (cPOC) and free fine particulate organic C (fPOC). The amount and rate of cover crop residue C mineralization were greater in SB than in SG across all wheat-growing stages. The SB increased large macroaggregate (>2 mm) compared to SG during the early wheat growth stages. The aggregate-protected C fractions were greater in SB and SG than CK at the pre-sowing, tillering, and heading stages. The 13C labeling indicated that C sequestration occurred primarily as aggregate-protected C, predominantly as MAOC. The recovery efficiencies of cover crop-derived C into soil C fractions fell below 0 % at green-up and jointing stages. At maturity stage, the cumulative C recovery rate of cover crop-derived C into SOC was greater in SB (16.3 %) than in SG (8.76 %). Correlation analysis indicated that cover cropping promoted SOC sequestration primarily and directly by increasing the aggregate-protected C. Structural equation model analysis suggested that SG sequestered C into soils primarily by increasing cPOC and iPOC, In contrast, SB sequestered C by increasing cPOC, iPOC, and MAOC. This study elucidates the dynamic effects of cover cropping on soil C during wheat growth and the distinct C sequestration mechanisms in legume and non-legume systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conservation agriculture boosts topsoil organic matter by restoring free lipids and lignin phenols biomarkers in distinct fractions Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling Nitrogen-rich roots regulate microbial- and plant-derived carbon in alkali-saline soil under land-use conversions in the Songnen Plain Field traffic loads on a silty farm site cause shifting and narrowing of soil pore size distribution Calcium lactate as a soil amendment: Mechanistic insights into its effect on salinity, alkalinity, and aggregation in saline-alkaline soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1