Spatial distributions, driving factors, and threshold effects of soil organic carbon stocks in the Tibetan Plateau

Zheng Sun, Feng Liu, Fei Yang, Decai Wang, Gan-Lin Zhang
{"title":"Spatial distributions, driving factors, and threshold effects of soil organic carbon stocks in the Tibetan Plateau","authors":"Zheng Sun, Feng Liu, Fei Yang, Decai Wang, Gan-Lin Zhang","doi":"10.1016/j.still.2025.106457","DOIUrl":null,"url":null,"abstract":"The Tibetan Plateau (TP), known as the “Earth's Third Pole”, has a fragile ecological environment, and is sensitive to global changes, which can easily lead to fluctuations of soil organic carbon (SOC). The spatial variations of soil organic carbon stocks (SOCS), and their driving factors in TP remain unclear. Here. we used quantile regression forest (QRF) model to map soil organic carbon density (SOCD) in TP at 90 m spatial resolution, and estimated the spatial uncertainty of the mapping. Generalized additive model (GAM) was used to analyze the nonlinear responses of SOCD to the driving factors. The results showed that the QRF model can explain about 32 %–51 % of SOCD variation, and the explanatory power decreased with increasing depth. The SOCD decreased gradually from southeast to northwest, and showed a decreasing trend with increasing depth. The SOCS of 0–100 cm soil was 37.26 Pg C of the entire TP, where the grassland occupied 54.59 % of the total stock. Vegetation and land surface temperature were important environmental covariates at all depths. SOCD has obvious nonlinear responses and threshold effects on temperature (MAAT), precipitation (MAP) and aridity (1–AI). The results are of great significance for understanding the status of SOC sequestration, and the response of SOCS in TP to climate conditions.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2025.106457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Tibetan Plateau (TP), known as the “Earth's Third Pole”, has a fragile ecological environment, and is sensitive to global changes, which can easily lead to fluctuations of soil organic carbon (SOC). The spatial variations of soil organic carbon stocks (SOCS), and their driving factors in TP remain unclear. Here. we used quantile regression forest (QRF) model to map soil organic carbon density (SOCD) in TP at 90 m spatial resolution, and estimated the spatial uncertainty of the mapping. Generalized additive model (GAM) was used to analyze the nonlinear responses of SOCD to the driving factors. The results showed that the QRF model can explain about 32 %–51 % of SOCD variation, and the explanatory power decreased with increasing depth. The SOCD decreased gradually from southeast to northwest, and showed a decreasing trend with increasing depth. The SOCS of 0–100 cm soil was 37.26 Pg C of the entire TP, where the grassland occupied 54.59 % of the total stock. Vegetation and land surface temperature were important environmental covariates at all depths. SOCD has obvious nonlinear responses and threshold effects on temperature (MAAT), precipitation (MAP) and aridity (1–AI). The results are of great significance for understanding the status of SOC sequestration, and the response of SOCS in TP to climate conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conservation agriculture boosts topsoil organic matter by restoring free lipids and lignin phenols biomarkers in distinct fractions Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling Nitrogen-rich roots regulate microbial- and plant-derived carbon in alkali-saline soil under land-use conversions in the Songnen Plain Field traffic loads on a silty farm site cause shifting and narrowing of soil pore size distribution Calcium lactate as a soil amendment: Mechanistic insights into its effect on salinity, alkalinity, and aggregation in saline-alkaline soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1