Rapid stimulation of protein synthesis in digesting snakes: Unveiling a novel gut-pancreas-muscle axis

IF 5.6 2区 医学 Q1 PHYSIOLOGY Acta Physiologica Pub Date : 2025-01-24 DOI:10.1111/apha.70006
Emil Rindom, Katja Bundgaard Last, Anja Svane, Asger Fammé, Per G. Henriksen, Jean Farup, Niels Jessen, Frank Vincenzo de Paoli, Tobias Wang
{"title":"Rapid stimulation of protein synthesis in digesting snakes: Unveiling a novel gut-pancreas-muscle axis","authors":"Emil Rindom,&nbsp;Katja Bundgaard Last,&nbsp;Anja Svane,&nbsp;Asger Fammé,&nbsp;Per G. Henriksen,&nbsp;Jean Farup,&nbsp;Niels Jessen,&nbsp;Frank Vincenzo de Paoli,&nbsp;Tobias Wang","doi":"10.1111/apha.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals. Pyloric ligation, pancreatectomy, and plasma transfusions were performed to explore the roles of gastrointestinal luminal signaling and pancreatic function across key tissues.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We observed profound and early stimulation of protein synthesis in gastrointestinal tissues and skeletal muscle already 3 h after ingestion, before any measurable rise in plasma amino acids from the meal. The gastrointestinal stimulation appears to be driven by luminal factors, while the stimulation of skeletal muscle protein synthesis is humoral with pancreatic insulin release as an integral mediator. The pre-absorptive anabolic activity is supported by the release of amino acids from the breakdown of endogenous proteins.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Our findings suggest that snakes initiate protein synthesis via distinct, tissue-specific pathways preceding nutrient absorption. This “pay before pumping” model shows how early protein synthesis prepares the digestive and muscular systems for later nutrient assimilation and growth. This intricate humoral regulation, involving a gut-pancreas-muscle axis, governs postprandial protein synthesis in snakes and provides insights into fundamental mechanisms driving metabolic adaptations and broader hyperplastic and hypertrophic responses.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"241 2","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.70006","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim

Snakes exhibit remarkable physiological shifts when their large meals induce robust postprandial growth after prolonged fasting. To understand the regulatory mechanisms underlying this rapid metabolic transition, we examined the regulation of protein synthesis in pythons, focusing on processes driving early postprandial tissue remodeling and growth.

Methods

Using the SUnSET method with puromycin labeling, we measured in vivo protein synthesis in fasting and digesting snakes at multiple post-feeding intervals. Pyloric ligation, pancreatectomy, and plasma transfusions were performed to explore the roles of gastrointestinal luminal signaling and pancreatic function across key tissues.

Results

We observed profound and early stimulation of protein synthesis in gastrointestinal tissues and skeletal muscle already 3 h after ingestion, before any measurable rise in plasma amino acids from the meal. The gastrointestinal stimulation appears to be driven by luminal factors, while the stimulation of skeletal muscle protein synthesis is humoral with pancreatic insulin release as an integral mediator. The pre-absorptive anabolic activity is supported by the release of amino acids from the breakdown of endogenous proteins.

Conclusions

Our findings suggest that snakes initiate protein synthesis via distinct, tissue-specific pathways preceding nutrient absorption. This “pay before pumping” model shows how early protein synthesis prepares the digestive and muscular systems for later nutrient assimilation and growth. This intricate humoral regulation, involving a gut-pancreas-muscle axis, governs postprandial protein synthesis in snakes and provides insights into fundamental mechanisms driving metabolic adaptations and broader hyperplastic and hypertrophic responses.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Physiologica
Acta Physiologica 医学-生理学
CiteScore
11.80
自引率
15.90%
发文量
182
审稿时长
4-8 weeks
期刊介绍: Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.
期刊最新文献
Electromechanical coupling across the gastroduodenal junction Proinflammatory cytokines and neuropeptides in psoriasis, depression, and anxiety Canonical or non-canonical, all aspects of G protein-coupled receptor kinase 2 in heart failure A reductionist approach to studying renal claudins provides insights into tubular permeability properties A distal convoluted tubule-specific isoform of murine SLC41A3 extrudes magnesium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1