Functional Characterization of Two Polymerizing Glycosyltransferases for the Addition of N-Acetyl-d-galactosamine to the Capsular Polysaccharide of Campylobacter jejuni.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-01-24 DOI:10.1021/acs.biochem.4c00704
Dao Feng Xiang, Tamari Narindoshvili, Frank M Raushel
{"title":"Functional Characterization of Two Polymerizing Glycosyltransferases for the Addition of <i>N</i>-Acetyl-d-galactosamine to the Capsular Polysaccharide of <i>Campylobacter jejuni</i>.","authors":"Dao Feng Xiang, Tamari Narindoshvili, Frank M Raushel","doi":"10.1021/acs.biochem.4c00704","DOIUrl":null,"url":null,"abstract":"<p><p>The exterior surface of the human pathogen <i>Campylobacter jejuni</i> is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, <i>N</i>-acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose. Here, we show that two different GT2 glycosyltransferases catalyze the transfer of <i>N</i>-acetyl-d-galactosamine from UDP-NAc-d-galactosamine furanoside to the C4-hydroxyl group of the d-glucuronamide moiety at the growing end of the capsular polysaccharide chain. Catalytic activity was not observed with glycosides of d-glucuronic acid, and thus, the C6-carboxylate of the d-glucuronic acid moiety must be amidated prior to chain elongation. One of these enzymes comprises the N-terminal domain of Cj1438 (residues 1-325) and the other is from the N-terminal domain of Cj1434 (residues 1-327). These two glycosyltransferases are ∼87% identical in sequence, but it is not clear why there are two glycosyltransferases from the same gene cluster that apparently catalyze the same reaction. This discovery represents the second polymerizing glycosyltransferase that has been isolated and functionally characterized for the biosynthesis of the capsular polysaccharide in the HS:2 serotype of <i>C. jejuni</i>.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00704","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The exterior surface of the human pathogen Campylobacter jejuni is coated with a capsular polysaccharide (CPS) that consists of a repeating sequence of 2-5 different sugars that can be modified with various molecular decorations. In the HS:2 serotype from strain NCTC 11168, the repeating unit within the CPS is composed of d-ribose, N-acetyl-d-galactosamine, and a d-glucuronic acid that is further amidated with either serinol or ethanolamine. The d-glucuronic acid moiety is also decorated with d-glycero-l-gluco-heptose. Here, we show that two different GT2 glycosyltransferases catalyze the transfer of N-acetyl-d-galactosamine from UDP-NAc-d-galactosamine furanoside to the C4-hydroxyl group of the d-glucuronamide moiety at the growing end of the capsular polysaccharide chain. Catalytic activity was not observed with glycosides of d-glucuronic acid, and thus, the C6-carboxylate of the d-glucuronic acid moiety must be amidated prior to chain elongation. One of these enzymes comprises the N-terminal domain of Cj1438 (residues 1-325) and the other is from the N-terminal domain of Cj1434 (residues 1-327). These two glycosyltransferases are ∼87% identical in sequence, but it is not clear why there are two glycosyltransferases from the same gene cluster that apparently catalyze the same reaction. This discovery represents the second polymerizing glycosyltransferase that has been isolated and functionally characterized for the biosynthesis of the capsular polysaccharide in the HS:2 serotype of C. jejuni.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Functional Characterization of Two Polymerizing Glycosyltransferases for the Addition of N-Acetyl-d-galactosamine to the Capsular Polysaccharide of Campylobacter jejuni. Identification of the Polymerizing Glycosyltransferase Required for the Addition of d-Glucuronic Acid to the Capsular Polysaccharide of Campylobacter jejuni. Role of Ribosomal Protein bS1 in Orthogonal mRNA Start Codon Selection. Yeast Eukaryotic Initiation Factor 4B Remodels the MRNA Entry Site on the Small Ribosomal Subunit. Chemical Logic of Peptide Branching by Iterative Nonlinear Nonribosomal Peptide Synthetases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1