Galectin-1-Induced Tumor Associated Macrophages Repress Antitumor Immunity in Hepatocellular Carcinoma Through Recruitment of Tregs.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-24 DOI:10.1002/advs.202408788
Xizhi Yu, Junjie Qian, Limin Ding, Caixu Pan, Xi Liu, Qinchuan Wu, Shuai Wang, Jianpeng Liu, Mingge Shang, Rong Su, Danjing Guo, Haiyang Xie, Shengyong Yin, Lin Zhou, Shusen Zheng
{"title":"Galectin-1-Induced Tumor Associated Macrophages Repress Antitumor Immunity in Hepatocellular Carcinoma Through Recruitment of Tregs.","authors":"Xizhi Yu, Junjie Qian, Limin Ding, Caixu Pan, Xi Liu, Qinchuan Wu, Shuai Wang, Jianpeng Liu, Mingge Shang, Rong Su, Danjing Guo, Haiyang Xie, Shengyong Yin, Lin Zhou, Shusen Zheng","doi":"10.1002/advs.202408788","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs. Specifically, patient specimens and a public database is first used to analyze the clinical relevance of Gal1 in hepatocellular carcinoma (HCC). Then, it is demonstrated that TAMs functioned as a critical mediator in the Gal1-induced progression of HCC and the establishment of an immunosuppressive tumor microenvironment. Furthermore, RNA-sequencing determined that Gal1 promoted the upregulation of chemokine (C-C motif) ligand 20 (CCL20) in TAMs via activating the PI3K/AKT/NF-κB pathway. Employing an anti-CCL20 neutralizing antibody and Foxp3DTR mice, it is demonstrated that CCR6<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells (Tregs) recruited by Gal1-induced TAMs contributed to reduced infiltration and dysfunctional state of CD8<sup>+</sup> T cells, subsequently facilitating tumor progression. Targeting Gal1 dampened the secretion of CCL20 and inhibits the recruitment of Tregs, thereby activating anti-tumor immunity and ameliorating anti-PD-1 resistance. Together, this findings revealed that Gal1-induced TAMs recruited Tregs through the CCL20-CCR6 axis. Inhibition of Gal1 improves the effectiveness of anti-PD1 therapy, shedding important new light on the combination immunotherapy of HCC.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2408788"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202408788","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs. Specifically, patient specimens and a public database is first used to analyze the clinical relevance of Gal1 in hepatocellular carcinoma (HCC). Then, it is demonstrated that TAMs functioned as a critical mediator in the Gal1-induced progression of HCC and the establishment of an immunosuppressive tumor microenvironment. Furthermore, RNA-sequencing determined that Gal1 promoted the upregulation of chemokine (C-C motif) ligand 20 (CCL20) in TAMs via activating the PI3K/AKT/NF-κB pathway. Employing an anti-CCL20 neutralizing antibody and Foxp3DTR mice, it is demonstrated that CCR6+Foxp3+ regulatory T cells (Tregs) recruited by Gal1-induced TAMs contributed to reduced infiltration and dysfunctional state of CD8+ T cells, subsequently facilitating tumor progression. Targeting Gal1 dampened the secretion of CCL20 and inhibits the recruitment of Tregs, thereby activating anti-tumor immunity and ameliorating anti-PD-1 resistance. Together, this findings revealed that Gal1-induced TAMs recruited Tregs through the CCL20-CCR6 axis. Inhibition of Gal1 improves the effectiveness of anti-PD1 therapy, shedding important new light on the combination immunotherapy of HCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Issue Information: (Adv. Sci. 5/2025) Profiling Pro-Inflammatory Proteases as Biomolecular Signatures of Material-Induced Subcutaneous Host Response in Immuno-Competent Mice (Adv. Sci. 5/2025) A Study on the Inflammatory Response of the Brain in Neurosyphilis (Adv. Sci. 5/2025) Platelet–Monocyte Aggregate Instigates Inflammation and Vasculopathy in Kawasaki Disease (Adv. Sci. 5/2025) Resensitizing β-Lactams by Reprogramming Purine Metabolism in Small Colony Variant for Osteomyelitis Treatment (Adv. Sci. 5/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1