{"title":"Integration of Phytomelatonin Signaling With Jasmonic Acid in Wound-induced Adventitious Root Regeneration.","authors":"Ying Liu, Xiaoyun Wang, Shirui Jing, Congyang Jia, Hongxin Li, Chonghua Li, Qiuyu He, Na Zhang, Yang-Dong Guo","doi":"10.1002/advs.202413485","DOIUrl":null,"url":null,"abstract":"<p><p>Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration. Melatonin (MT), structurally similar to auxin, also significantly influences root induction, but its specific mechanism is unclear. Phytomelatonin's signal transduction is discovered in wound-induced root formation, identifying SlPMTR1/2 as phytomelatonin receptors, transmitting signals to SHOOT BORNE ROOTLESS 1 (SlSBRL1), a key regulator of wound-induced root regeneration, via the G protein α subunit 1 (SlGPA1). Additionally, SlPMTR1/2 is activated by JA, and targeted by SlMYC2. Overall, the specific mechanisms of phytomelatonin on wound-induced root regeneration is uncovered and revealed a crosstalk between phytomelatonin and JA, offering new insights into plant repair mechanisms.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413485"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413485","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants exhibit remarkable regenerative abilities under stress conditions like injury, herbivory, and damage from harsh weather, particularly through adventitious root formation. They have sophisticated molecular mechanisms to recognize and respond to wounding. Jasmonic acid (JA), a wound hormone, triggers auxin synthesis to stimulate root regeneration. Melatonin (MT), structurally similar to auxin, also significantly influences root induction, but its specific mechanism is unclear. Phytomelatonin's signal transduction is discovered in wound-induced root formation, identifying SlPMTR1/2 as phytomelatonin receptors, transmitting signals to SHOOT BORNE ROOTLESS 1 (SlSBRL1), a key regulator of wound-induced root regeneration, via the G protein α subunit 1 (SlGPA1). Additionally, SlPMTR1/2 is activated by JA, and targeted by SlMYC2. Overall, the specific mechanisms of phytomelatonin on wound-induced root regeneration is uncovered and revealed a crosstalk between phytomelatonin and JA, offering new insights into plant repair mechanisms.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.