Ricardo Meyrelles, Bogdan R Brutiu, Boris Maryasin
{"title":"Computational Insights into the Mechanism of Lewis Acid-Catalyzed Alkene-Aldehyde Coupling.","authors":"Ricardo Meyrelles, Bogdan R Brutiu, Boris Maryasin","doi":"10.1002/cplu.202400751","DOIUrl":null,"url":null,"abstract":"<p><p>The Lewis acid-catalyzed coupling of alkenes and aldehydes presents a modern, versatile synthetic alternative to classical carbonyl addition chemistry, offering exceptional regio- and stereoselectivity. In this work, we present a comprehensive computational investigation into the reaction mechanism of this transformation. Our findings confirm the occurrence of an enantioselective transannular [1,5]-hydride shift step and demonstrate that the enantioselectivity of the reaction arises predominantly from steric clashes between functional groups in the cyclization step. Combining computational and experimental results, we establish that the Lewis acid catalyst facilitates the initial C-O coupling step between the alkene and the activated aldehyde. Investigations into systems with longer alkyl chains reveal that while they follow a similar mechanistic pathway, cyclization becomes kinetically hindered, preventing the reaction from proceeding. These insights illuminate the factors governing reaction outcomes and limitations, paving the way for future developments in this area.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202400751"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202400751","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Lewis acid-catalyzed coupling of alkenes and aldehydes presents a modern, versatile synthetic alternative to classical carbonyl addition chemistry, offering exceptional regio- and stereoselectivity. In this work, we present a comprehensive computational investigation into the reaction mechanism of this transformation. Our findings confirm the occurrence of an enantioselective transannular [1,5]-hydride shift step and demonstrate that the enantioselectivity of the reaction arises predominantly from steric clashes between functional groups in the cyclization step. Combining computational and experimental results, we establish that the Lewis acid catalyst facilitates the initial C-O coupling step between the alkene and the activated aldehyde. Investigations into systems with longer alkyl chains reveal that while they follow a similar mechanistic pathway, cyclization becomes kinetically hindered, preventing the reaction from proceeding. These insights illuminate the factors governing reaction outcomes and limitations, paving the way for future developments in this area.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.