Aerodynamic and Inertial Loading Effects of Insect-Inspired Appendages in Small Unmanned Aerial Vehicles.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-02 DOI:10.3390/biomimetics10010022
Titilayo Ogunwa, Javaan Chahl
{"title":"Aerodynamic and Inertial Loading Effects of Insect-Inspired Appendages in Small Unmanned Aerial Vehicles.","authors":"Titilayo Ogunwa, Javaan Chahl","doi":"10.3390/biomimetics10010022","DOIUrl":null,"url":null,"abstract":"<p><p>Insects enhance aerodynamic flight control using the dynamic movement of their appendages, aiding in balance, stability, and manoeuvrability. Although biologists have observed these behaviours, the phenomena have not been expressed in a unified mathematical flight dynamics framework. For instance, relevant existing models tend to disregard either the aerodynamic or the inertial effects of the appendages of insects, such as the abdomen, based on the assumption that appendage dynamic effects dominate in comparison to aerodynamic effects, or that appendages are stationary. However, appendages in insects exist in various shapes and sizes, which affect the level of both the inertial and aerodynamic contributions to the overall system. Here, the effects of the individual dynamic, inertial and aerodynamic contributions of biologically inspired appendages in fixed wing forward flight demonstrate the utility of the framework on an example system. The analysis demonstrates the effect of these aerodynamic appendages on the steady flight and manoeuvre performance of a small aircraft with an actuated aft appendage capable of movement in the longitudinal and lateral axes, analogous to an insect abdomen. We use the method to consider designs with different appendage areas. The example case showed that ignoring the aerodynamic contribution might yield useful insights depending on the size of the appendage, but including the aerodynamic effects as part of a consistent mathematical framework leads to a more comprehensive understanding of the role of appendage morphology. The method allows improved modelling for modern multivariate control system design using bioinspired appendages. Inertia-dominated appendages provided more advantages in energy-based longitudinal manoeuvres and in trimmed flight, with reduced advantage in initiating lateral manoeuvres.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010022","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Insects enhance aerodynamic flight control using the dynamic movement of their appendages, aiding in balance, stability, and manoeuvrability. Although biologists have observed these behaviours, the phenomena have not been expressed in a unified mathematical flight dynamics framework. For instance, relevant existing models tend to disregard either the aerodynamic or the inertial effects of the appendages of insects, such as the abdomen, based on the assumption that appendage dynamic effects dominate in comparison to aerodynamic effects, or that appendages are stationary. However, appendages in insects exist in various shapes and sizes, which affect the level of both the inertial and aerodynamic contributions to the overall system. Here, the effects of the individual dynamic, inertial and aerodynamic contributions of biologically inspired appendages in fixed wing forward flight demonstrate the utility of the framework on an example system. The analysis demonstrates the effect of these aerodynamic appendages on the steady flight and manoeuvre performance of a small aircraft with an actuated aft appendage capable of movement in the longitudinal and lateral axes, analogous to an insect abdomen. We use the method to consider designs with different appendage areas. The example case showed that ignoring the aerodynamic contribution might yield useful insights depending on the size of the appendage, but including the aerodynamic effects as part of a consistent mathematical framework leads to a more comprehensive understanding of the role of appendage morphology. The method allows improved modelling for modern multivariate control system design using bioinspired appendages. Inertia-dominated appendages provided more advantages in energy-based longitudinal manoeuvres and in trimmed flight, with reduced advantage in initiating lateral manoeuvres.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1