An Open-Source 3D Printed Three-Fingered Robotic Gripper for Adaptable and Effective Grasping.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-04 DOI:10.3390/biomimetics10010026
Francisco Yumbla, Emiliano Quinones Yumbla, Erick Mendoza, Cristobal Lara, Javier Pagalo, Efraín Terán, Redhwan Algabri, Myeongyun Doh, Tuan Luong, Hyungpil Moon
{"title":"An Open-Source 3D Printed Three-Fingered Robotic Gripper for Adaptable and Effective Grasping.","authors":"Francisco Yumbla, Emiliano Quinones Yumbla, Erick Mendoza, Cristobal Lara, Javier Pagalo, Efraín Terán, Redhwan Algabri, Myeongyun Doh, Tuan Luong, Hyungpil Moon","doi":"10.3390/biomimetics10010026","DOIUrl":null,"url":null,"abstract":"<p><p>This research focuses on the design of a three-finger adaptive gripper using additive manufacturing and electromechanical actuators, with the purpose of providing a low-cost, efficient, and reliable solution for easy integration with any robot arm for industrial and research purposes. During the development phase, 3D printing materials were employed in the gripper's design, with Polylactic Acid (PLA) filament used for the rigid mechanical components and Thermoplastic Polyurethane (TPU) for the flexible membranes that distribute pressure to the resistive force sensors. Stress analysis and simulations were conducted to evaluate the performance of the components under load and to gradually refine the design of the adaptive gripper. It was ensured that the mechanism could integrate effectively with the robotic arm and be precisely controlled through a PID controller. Furthermore, the availability of spare parts in the local market was considered essential to guarantee easy and cost-effective maintenance. Tests were conducted on an actual robotic arm, and the designed gripper was able to effectively grasp objects such as a soda can and a pencil. The results demonstrated that the adaptive gripper successfully achieved various types of grasping, offering a scalable and economical solution that represents a significant contribution to the field of robotic manipulation in industrial applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762333/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research focuses on the design of a three-finger adaptive gripper using additive manufacturing and electromechanical actuators, with the purpose of providing a low-cost, efficient, and reliable solution for easy integration with any robot arm for industrial and research purposes. During the development phase, 3D printing materials were employed in the gripper's design, with Polylactic Acid (PLA) filament used for the rigid mechanical components and Thermoplastic Polyurethane (TPU) for the flexible membranes that distribute pressure to the resistive force sensors. Stress analysis and simulations were conducted to evaluate the performance of the components under load and to gradually refine the design of the adaptive gripper. It was ensured that the mechanism could integrate effectively with the robotic arm and be precisely controlled through a PID controller. Furthermore, the availability of spare parts in the local market was considered essential to guarantee easy and cost-effective maintenance. Tests were conducted on an actual robotic arm, and the designed gripper was able to effectively grasp objects such as a soda can and a pencil. The results demonstrated that the adaptive gripper successfully achieved various types of grasping, offering a scalable and economical solution that represents a significant contribution to the field of robotic manipulation in industrial applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1