Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-07 DOI:10.3390/biomimetics10010032
Tong Yue, Tao Li
{"title":"Crisscross Moss Growth Optimization: An Enhanced Bio-Inspired Algorithm for Global Production and Optimization.","authors":"Tong Yue, Tao Li","doi":"10.3390/biomimetics10010032","DOIUrl":null,"url":null,"abstract":"<p><p>Global optimization problems, prevalent across scientific and engineering disciplines, necessitate efficient algorithms for navigating complex, high-dimensional search spaces. Drawing inspiration from the resilient and adaptive growth strategies of moss colonies, the moss growth optimization (MGO) algorithm presents a promising biomimetic approach to these challenges. However, the original MGO can experience premature convergence and limited exploration capabilities. This paper introduces an enhanced bio-inspired algorithm, termed crisscross moss growth optimization (CCMGO), which incorporates a crisscross (CC) strategy and a dynamic grouping parameter, further emulating the biological mechanisms of spore dispersal and resource allocation in moss. By mimicking the interwoven growth patterns of moss, the CC strategy facilitates improved information exchange among population members, thereby enhancing offspring diversity and accelerating convergence. The dynamic grouping parameter, analogous to the adaptive resource allocation strategies of moss in response to environmental changes, balances exploration and exploitation for a more efficient search. Key findings from rigorous experimental evaluations using the CEC2017 benchmark suite demonstrate that CCMGO consistently outperforms nine established metaheuristic algorithms across diverse benchmark functions. Furthermore, in a real-world application to a three-channel reservoir production optimization problem, CCMGO achieves a significantly higher net present value (NPV) compared to benchmark algorithms. This successful application highlights CCMGO's potential as a robust and adaptable tool for addressing complex, real-world optimization challenges, particularly those found in resource management and other nature-inspired domains.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759166/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010032","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global optimization problems, prevalent across scientific and engineering disciplines, necessitate efficient algorithms for navigating complex, high-dimensional search spaces. Drawing inspiration from the resilient and adaptive growth strategies of moss colonies, the moss growth optimization (MGO) algorithm presents a promising biomimetic approach to these challenges. However, the original MGO can experience premature convergence and limited exploration capabilities. This paper introduces an enhanced bio-inspired algorithm, termed crisscross moss growth optimization (CCMGO), which incorporates a crisscross (CC) strategy and a dynamic grouping parameter, further emulating the biological mechanisms of spore dispersal and resource allocation in moss. By mimicking the interwoven growth patterns of moss, the CC strategy facilitates improved information exchange among population members, thereby enhancing offspring diversity and accelerating convergence. The dynamic grouping parameter, analogous to the adaptive resource allocation strategies of moss in response to environmental changes, balances exploration and exploitation for a more efficient search. Key findings from rigorous experimental evaluations using the CEC2017 benchmark suite demonstrate that CCMGO consistently outperforms nine established metaheuristic algorithms across diverse benchmark functions. Furthermore, in a real-world application to a three-channel reservoir production optimization problem, CCMGO achieves a significantly higher net present value (NPV) compared to benchmark algorithms. This successful application highlights CCMGO's potential as a robust and adaptable tool for addressing complex, real-world optimization challenges, particularly those found in resource management and other nature-inspired domains.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1