Influence of the Sodium Titanate Crystal Size of Biomimetic Dental Implants on Osteoblastic Behavior: An In Vitro Study.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-12 DOI:10.3390/biomimetics10010043
Saray Fernández-Hernández, Javier Gil, Daniel Robles-Cantero, Esteban Pérez-Pevida, Mariano Herrero-Climent, Aritza Brizuela-Velasco
{"title":"Influence of the Sodium Titanate Crystal Size of Biomimetic Dental Implants on Osteoblastic Behavior: An In Vitro Study.","authors":"Saray Fernández-Hernández, Javier Gil, Daniel Robles-Cantero, Esteban Pérez-Pevida, Mariano Herrero-Climent, Aritza Brizuela-Velasco","doi":"10.3390/biomimetics10010043","DOIUrl":null,"url":null,"abstract":"<p><p>Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment). Roughness, wettability, surface energy and the sodium content of the surface were determined. The different surfaces were cultured with human osteoblastic cells; cell adhesion was determined at 3 and 14 days, and the degree of mineralization was determined at 14 days via alkaline phosphatase levels. Variations in the microstructure and size of sodium titanate crystals in NaOH solutions rich (1 g/L) or low in calcium (approximately 100 ppm) were determined. The results show that as the cooling rate increases, the size of the crystals decreases (from 0.4 μm to 0.8 μm) except for the case of 115 °C/h, when the rate is too fast for crystalline nucleation to occur on the surface of the titanium. The thermochemical treatment does not influence the roughness or the cooling rate since a Sa of 0.21 μm is maintained. However, the presence of titanate causes a decrease in the contact angle from 70° to 42° and, in turn, causes an increase in the total surface energy from 35 to 49.5 mJ/m<sup>2</sup>, with the polar component standing out in this energy increase. No variations were observed in the thermochemical treatments in the presence of sodium, which was around 1200 ppm. It was observed that as the size of the crystals decreases, cell adhesion increases at 3 days and decreases at 14 days. This is because finer crystals on the surface are already in the mineralization process, as demonstrated using the level of alkaline phosphatase that is maximal for the cooling rate of 75 °C/h. It was possible to confirm that the variations in the concentrated NaOH solutions with different calcium contents did not affect the crystal sizes or the microstructure of the surface. This research makes it possible to obtain dental implants with different mineralization speeds depending on the cooling rate applied.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10010043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Treating the surfaces of dental implants in an alkaline medium allows us to obtain microstructures of sodium titanate crystals that favor the appearance of apatite in the physiological environment, producing osteoconductive surfaces. In this research, 385 discs made of titanium used in dental implants underwent different NaOH treatments with a 6M concentration at 600 °C and cooling rates of 20, 50, 75, and 115 °C/h. Using high-resolution electron microscopy, the microstructures were observed, and the different crystal sizes were determined and compared with control samples (those without biomimetic treatment). Roughness, wettability, surface energy and the sodium content of the surface were determined. The different surfaces were cultured with human osteoblastic cells; cell adhesion was determined at 3 and 14 days, and the degree of mineralization was determined at 14 days via alkaline phosphatase levels. Variations in the microstructure and size of sodium titanate crystals in NaOH solutions rich (1 g/L) or low in calcium (approximately 100 ppm) were determined. The results show that as the cooling rate increases, the size of the crystals decreases (from 0.4 μm to 0.8 μm) except for the case of 115 °C/h, when the rate is too fast for crystalline nucleation to occur on the surface of the titanium. The thermochemical treatment does not influence the roughness or the cooling rate since a Sa of 0.21 μm is maintained. However, the presence of titanate causes a decrease in the contact angle from 70° to 42° and, in turn, causes an increase in the total surface energy from 35 to 49.5 mJ/m2, with the polar component standing out in this energy increase. No variations were observed in the thermochemical treatments in the presence of sodium, which was around 1200 ppm. It was observed that as the size of the crystals decreases, cell adhesion increases at 3 days and decreases at 14 days. This is because finer crystals on the surface are already in the mineralization process, as demonstrated using the level of alkaline phosphatase that is maximal for the cooling rate of 75 °C/h. It was possible to confirm that the variations in the concentrated NaOH solutions with different calcium contents did not affect the crystal sizes or the microstructure of the surface. This research makes it possible to obtain dental implants with different mineralization speeds depending on the cooling rate applied.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Bone Marrow Stromal Cells Generate a Pro-Healing Inflammasome When Cultured on Titanium-Aluminum-Vanadium Surfaces with Microscale/Nanoscale Structural Features. Medial Patellofemoral Ligament Repair with Suture Tape Augmentation Can Yield Good Midterm Clinical Outcomes Regardless of Skeletal Maturity and Joint Laxity. Segment, Compare, and Learn: Creating Movement Libraries of Complex Task for Learning from Demonstration. Bionic Modeling Study on the Landing Mechanism of Flapping Wing Robot Based on the Thoracic Legs of Purple Stem Beetle, Sagra femorata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1